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1 Non-Rigorous Background

This course is about the study of di�erential equations, in which variables are investigated in terms

of rates of change (not just with respect to time). It is, obviously, an area of mathematics with many

direct applications to physics, including mechanics and so on. As such, it is important to have a grasp

of how we codify a physical problem; we introduce this with an example:

Proposition 1.1 (Newton's Law of Cooling). If a body of temperature T (t) is placed in an environment

of temperature T0 then it will cool at a rate proportional to the di�erence in temperature.

De�nition 1.2. A dependent variable is a variables considered as changing as a consequence of

changes in other variables, which are called independent variables.

In the example of Newton's Law of Cooling, the dependent variable is the temperature T which

depends upon the independent variable time, t. The standard (Leibniz) notation for di�erentiation

then gives us these equivalent forms for Newton's Law:

dT

dt
∝ T − T0

dT

dt
= −k (T − T0)

where we take k to be a constant; in fact, we require the constant of proportionality k > 0 for actual

physical temperature exchanges.

Having established this basic approach, we shall begin with a fairly informal overview of di�erenti-

ation and integration, to help us understand the techniques we will develop later. For a fully rigorous

(axiomatic) approach to calculus, see the Analysis courses.

1.1 Di�erentiation using Big O and Little-o Notation

We de�ne the rate of change of a function f (x) as being

df

dx
= lim
h→0

f (x+ h)− f (x)

h

which is pictorially equivalent to the gradient of f at x.

Note that the limit can be taken from above or below, written limh→0±
f(x+h)−f(x)

h , with both side

limits being equal for di�erentiable functions. (Hence f (x) = |x| is not di�erentiable at x = 0.)

We use various notations, given f = f (x):

df

dx
≡ f ′ (x) ≡

(
d

dx

)
[f (x)] ≡ d

dx
f

where d
dx is a di�erential operator. Then

d

dx

(
df

dx

)
≡ d2f

dx2
≡ f ′′ (x)
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To try and come up with a concise and useful way of writing f in terms of df
dx , we introduce another

notation (or two).

De�nition 1.3. We write

f (x) = o (g (x))

as x→ c if

lim
x→c

f (x)

g (x)
= 0

and we say f is little-o of g (as x tends to c).

This de�nition allows us to make explicit what we mean by f `grows more slowly' than g.

Example 1.4.

(i) x = o (
√
x) as x→ 0+.

(ii) lnx = o (x) as x→ +∞.

De�nition 1.5. We say that

f (x) = O (g (x))

as x→ c if
f (x)

g (x)

is bounded as x→ c, and we say f is big-O of g (as x tends to c).

This similarly gives a rigorous de�nition of what it means to say that g `grows at least as quickly' as

f . Indeed, if f = o (g) then it follows that f = O (g).

Example 1.6. 2x2−x
x2+1 = O (1) as x→∞. Similarly, 2x2 − x = O

(
x2 + 1

)
= O

(
x2
)
.

It follows that
df

dx
=
f (x+ h)− f (x)

h
+
o (h)

h

the term on the right being referred to as the error term. (If we wrote it as ε (h) = o(h)
h we would have

a function ε such that ε
h → 0 as h→ 0.)

Thus

h
df

dx
= f (x+ h)− f (x) + o (h)

and hence

f (x+ h) = f (x) + h
df

dx︸ ︷︷ ︸
linear approximation

+o (h)
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Applying this to some �xed point x0 we obtain, for a general point x = x0 + h,

f (x0 + h) = f (x0) + h

[
df

dx

]
x0

+ o (h)

f (x) = f (x0) + (x− x0)

[
df

dx

]
x0

+ o (h)

Equivalently, if y = f (x),

y = y0 +m (x− x0)︸ ︷︷ ︸
linear approximation

+o (h)

which gives the equation of the tangent line of the graph of y = f (x) or y (x).

1.1.1 The chain rule

Consider f (x) = F [g (x)], assuming these are all di�erentiable functions in some interval. We use

little-o notation to derive the chain rule, that f ′ (x) = g′(x)F ′ [g (x)].

df

dx
= lim

h→0

F [g (x+ h)]− F [g (x)]

h

= lim
h→0

1

h
{F [g (x) + hg′(x) + o (h)]− F [g (x)]}

= lim
h→0

1

h
{F [g (x)] + [hg′(x) + o (h)]F ′ [g (x)] + o (hg′(x) + o (h))− F [g (x)]}

Here note o (h)F ′ [g (x)] = o (h) for �nite F ′, and similarly hg′(x) tends to 0 like h for �nite g′, so

(noting that the F [g (x)] terms cancel)

df

dx
= lim

h→0

1

h
{hg′(x)F ′ [g (x)] + o (h)}

= g′(x)F ′ [g (x)]

This can be written as
df

dx
=

df

dg
· dg

dx

Example 1.7. If f (x) =
√

sinx, then g (x) = sinx and F [x] =
√
x, so f ′ (x) = cosx · 1

2
√

sin x
.

1.1.2 The inverse function rule

A special case of this is that

1 =
dx

dx
=

dx

dy
· dy

dx

so that
dx

dy
=

(
dy

dx

)−1

If we have y = f (x), then dy/dx = f ′ (x).
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Now x = f−1 (y) implies that
dx

dy
=
(
f−1

)′
(y)

but then from the above, we have

(
f−1

)′
(y) =

(
dy

dx

)−1

= (f ′ (x))
−1

Rewriting everything in terms of one variable,

(
f−1

)′
(y) =

1

f ′ (f−1 (y))

1.1.3 The product rule

We can also show that if f (x) = u (x) v (x), where u and v are di�erentiable, df
dx = u′v + uv′, using a

similar argument.

Exercise 1.8. Prove the product rule using little-o notation.

1.1.4 Leibniz's rule

If f = uv we have

f = uv

f ′ = u′v + vu′

f ′′ = u′′v + u′v′ + v′u′ + vu′′

= u′′v + 2u′v′ + uv′′

f ′′′ = u′′′v + 3′′v′ + 3u′v′′ + 3v′′′

This suggests a pattern, with the numbers echoing Pascal's triangle. Indeed, it is fairly easy to

show (by induction) that

f (n) (x) = u(n)v + nu(n−1)v′ + · · ·+
(
n

r

)
u(n−r)v(r) + · · ·+ uv(n)

This is referred to as (the general) Leibniz's rule.

1.1.5 Taylor series

Recall that

f (x+ h) = f (x) + hf ′ (x) + o (h)
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Now imagine that f ′ (x) is di�erentiable, and so on; then we can construct

f (x+ h) = f (x) + hf ′ (x) +
h2

2!
f ′′ (x) + o

(
h2
)

= f (x) + hf ′ (x) +
h2

2!
f ′′ (x) + · · ·+ hn

n!
f (n) (x) + En

where En = o (hn) as h→ 0, provided f (n+1) (x) exists.

Theorem 1.9 (Taylor's Theorem). Taylor's theorem gives us various ways of writing En, but the

most useful consequence is that En = O
(
hn+1

)
as h = x− x0 → 0, where

f (x) = f (x0) + (x− x0) f ′ (x0) + · · ·+ (x− x0)
n

n!
f (n) (x0) + En

This leads to the Taylor series about x0 and gives a useful local approximation for f . We cannot

expect it to be of much use when x− x0 grows large.

1.1.6 L'Hôpital's rule

Let f (x) and g (x) be di�erentiable at x = x0, and

lim
x→x0

f (x) = lim
x→x0

g (x) = 0

Then

lim
x→x0

f (x)

g (x)
= lim
x→x0

f ′ (x)

g′ (x)

provided g′ (x0) 6= 0 (and that the limit exists).

Proof. From Taylor series, we have

f (x) = f (x0) + (x− x0) f ′ (x0) + o (x− x0)

g (x) = g (x0) + (x− x0) g′ (x0) + o (x− x0)

and hence f (x0) = g (x0) = 0; then

f

g
=
f ′ + o(∆x)

∆x

g′ + o(∆x)
∆x

where ∆x = x− x0. Then as ∆x→ 0,
f

g
→ f ′

g′

8



1.2 Integration

The basic idea behind integration is of a re�ned sum of the area under a graph; for example, a simple

de�nition of the Riemann integral, where it exists, might be given by

ˆ b

a

f (x) dx = lim
∆x→0

N−1∑
n=0

f (xn) ∆x

where xn are N points spaced throughout [a, b], where ∆x = xn−xn−1 is the size of the interval being

summed over.

Note that if f ′ is �nite, the di�erence between the area beneath the graph and the approxima-

tion given above is a roughly triangular shape of area |En|, where the base is ∆x and the height is

f ′ (xn) ∆x+ o (∆x). Hence

En =
1

2
∆x [f ′ (xn) ∆x+ o (∆x)]

= O
(

(∆x)
2
)

for �nite f ′.

Hence since we choose xn above so that the ∆x = O
(

1
N

)
, we get

Area = lim
N→∞

[
N−1∑
n=1

f (xn) ∆x+O

(
1

N

)]

= lim
N→∞

[
N−1∑
n=1

f (xn) ∆x

]

=

ˆ b

a

f (x) dx

as de�ned above.

1.2.1 The Fundamental Theorem of Calculus

We now understand intuitively what we mean by integration, but we need to develop the relationship

between the function f and its integral. It is traditional to say that integration is the opposite of

di�erentiation. The following theorem says exactly what we mean by this.

Theorem 1.10 (The Fundamental Theorem of Calculus). If f is continuous, d
dx

´ x
a
f (t) dt = f (x).

Proof. We shall not claim to give a full proof of the above theorem, but if we assume that if´ x+h

x
f (t) dt = f (x)h+O

(
h2
)
we can establish it. The partial proof is obtained simply be setting
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F (x) =
´ x
a
f (t) dt and calculating

dF

dx
= lim

h→0

1

h

[ˆ x+h

a

f (t) dt−
ˆ x

a

f (t) dt

]

= lim
h→0

1

h

ˆ x+h

x

f (t) dt

= lim
h→0

1

h

[
f (x)h+O

(
h2
)]

= f (x)

This means that if we have a continuous function f that we recognize as the derivative of some

other function F , we can infer that
´ x
a
f (t) dt = F (x)− F (a).

Remark. Note that we are taking the derivative with respect to the upper limit; the corresponding

result for the lower limit is
d

dx

ˆ b

x

f (t) dt = −f (x)

as can be seen by exchanging the two limits.

Additionally, we can establish, via the chain rule, that

d

dx

ˆ g(x)

a

f (t) dt =
dg

dx

d

dg

ˆ g

a

f (t) dt

= g′ (x) · f (g (x))

Finally, we can de�ne the inde�nite integral for convenience:

De�nition 1.11. A inde�nite integral is written as

ˆ
f (x) dx ≡

ˆ x

f (t) dt

where the lower limit is unspeci�ed, giving rise to the familiar arbitrary additive constant.

1.2.2 Integration by substitution

Now using the fundamental theorem of calculus, we can reverse our rules for di�erentiation to obtain

techniques for integration. In the case of the chain rule, this gives rise to the familiar method of

integration by substitution: ˆ
f (u (x))

du

dx
dx =

ˆ
f (u) du

or more accurately, giving explicit limits,

ˆ b

a

f (u (x))
du

dx
dx =

ˆ u(b)

u(a)

f (t) dt
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Note that we are again assuming su�cient continuity of f , and also of u (since we need it to have

a derivative). It is then clear that if F =
´
f is an antiderivative of f , then

d

dx
F (u (x)) = u′ (x)F ′ (u (x))

= u′ (x) f (u (x))

and hence that

ˆ b

a

u′ (x) f (u (x)) dx = F (u (b))− F (u (a))

=

ˆ u(b)

u(a)

f (t) dt

as was required.

Example 1.12. For completeness, we give an example:

I =

ˆ
1− 2x√
x− x2

dx

=

ˆ (
x− x2

)−1/2
(1− 2x) dx

Then u = x− x2 gives du
dx = (1− 2x), so the integral becomes

I =

ˆ
u−1/2du

= 2u1/2 + C

= 2
√
x− x2 + C

Note that we avoided writing du = (1− 2x) dx, since we have not really given a meaning to this

expression. This is best used only as a mnemonic.

Integration by substitution often requires a certain amount of inventiveness, so it is useful to have

some rules of thumb for dealing with some forms of integrand. This table has some suggestions for

trigonometric substitutions:

Identity Function Substitution

cos2 θ + sin2 θ = 1
√

1− x2 x = sin θ

1 + tan2 θ = sec2 θ 1 + x2 x = tan θ

cosh2 u− sinh2 u = 1
√
x2 − 1 x = coshu√
x2 + 1 x = sinhu

1− tanh2 u = sech2u 1− x2 x = tanhu

11



Example 1.13. This gives one example of the application of such an identity: consider´ √
2x− x2dx. An often useful approach with expressions like this is to complete the square:

ˆ √
2x− x2dx =

ˆ √
1− (x− 1)

2
dx

Then this has the form above suggesting a sin θ substitution. In this case, we want x−1 = sin θ,

and so we have

ˆ √
2x− x2dx =

ˆ √
1− (sin θ)

2 dx

dθ
dθ

=

ˆ
cos θ · cos θdθ

=

ˆ
cos2 θdθ

We can then calculate this using the standard double-angle formula cos 2θ = 2 cos2 θ − 1:

ˆ
cos2 θdθ =

ˆ
1

2
(1 + cos 2θ) dθ

=
1

2
θ +

1

4
sin 2θ + C

=
1

2
θ +

1

2
sin θ cos θ + C

=
1

2
sin−1 (x− 1) +

1

2
(x− 1)

√
1− (x− 1)

2
+ C

Another example shows that choosing the right substitution may not be obvious:

Example 1.14. Calculate
´

x
1+x4 dx.

It might seem tempting to try and simplify the denominator in this expression, but the best

approach in fact is to avoid having terms both in the numerator and denominator, which is most

easily done by eliminating the x term on top. Here, let u = x2 gives du
dx = 2x and thus we get

ˆ
x

1 + x4
dx =

1

2

ˆ
1

1 + u2
du

Then using the u = tan θ substitution, we get

1

2

ˆ
1

1 + u2
du =

1

2

ˆ
1

1 + tan2 θ
sec2 θdθ

=
1

2
θ + C

=
1

2
tan−1 x2 +D

12



1.2.3 Integration by parts

Again, we can use the Leibniz identity for di�erentiation, (uv)
′

= u′v + uv′, to obtain an integration

technique:

ˆ
(u′v + uv′) dx = uv

ˆ
uv′dx = uv −

ˆ
u′vdx

Again, this demands some inventiveness in its application - identifying what to call u and what to

call v′ is not always easy.

We begin with a straight-forward example:

Example 1.15. Calculate
´∞

0
xe−xdx.

To simplify the integral we want to make the u′v expression easier to integrate. Taking u = x

and v′ = e−x gives

ˆ ∞
0

xe−xdx =
[
−xe−x

]∞
0
−
ˆ ∞

0

−e−xdx

= 0 +
[
−e−x

]∞
0

= 0 + 1

= 1

This technique but can actually give surprising results:.

Example 1.16. Calculate
´
ex cosxdx.

Using the technique, we write u = cosx and v′ = ex, which gives us

ˆ
ex cosxdx = ex cosx+

ˆ
ex sinxdx

with a similar integral to be computed. We can now take u = sinx, and v′ = ex again, to get

ˆ
ex sinxdx = ex sinx−

ˆ
ex cosxdx

Hence we have

ˆ
ex cosxdx = ex cosx+ ex sinx−

ˆ
ex cosxdx

2

ˆ
ex cosxdx = ex [sinx+ cosx] + C

ˆ
ex cosxdx =

1

2
ex [sinx+ cosx] +D

13



Remark. Another approach to this is to use complex numbers: we remember Euler's identity, eix =

cosx+ i sinx, and then see

ˆ
e(1+i)xdx =

ˆ
ex cosxdx+ i

ˆ
ex sinxdx

Taking real parts, we then get

Re

{
1

1 + i
e(1+i)x

}
+ C =

ˆ
ex cosxdx

ˆ
ex cosxdx = Re

{
1− i

2
eix
}
ex + C

=
1

2
ex [cosx+ sinx] + C

Exercise 1.17. Calculate
´

sec3 xdx.

A particularly common application of integration by parts is in proving reduction formulae.

Example 1.18. Calculate In =
´

cosn xdx in terms of In−2.

We can do this by setting u = cosx and v′ = cosn−1 x:

In = cosn−1 x sinx+

ˆ
(n− 1) cosn−2 x sin2 xdx

= cosn−1 x sinx+ (n− 1)

ˆ
cosn−2 x

(
1− cos2 x

)
dx

= cosn−1 x sinx+ (n− 1) (In−2 − In)

nIn = cosn−1 x sinx+ (n− 1) In−2

In =
1

n
cosn−1 x sinx+

n− 1

n
In−2

where we ignore the various integration constants.
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2 Functions of Several Variables

One of the most natural extensions of this kind of calculus is to generalize from f (x) to f (x, y, · · · , z),
or f (x) for a vector x. These functions obviously naturally arise in all sorts of situations, including

any physical situation with a function de�ned on all space, like electromagnetic �elds.

To begin with, we will focus on functions of two variables f (x, y). Examples abound, with one of

the most useful being the height of terrain, z (x, y); pressure maps at sea level also provide a familiar

example. However, we will also consider more abstract parameterizations, like the density of a gas as

a function of temperature and pressure, ρ (T, p).

These functions are best represented by contour plots in 2D (or surface/heightmap plots in simu-

lated 3D), and we will see how to draw these diagrams, as well as how to analyze them.

What is the slope of a hill?

This is natural motivating question for di�erential calculus on surfaces. The key observation is that

slope depends on direction. We begin by thinking about the slopes in directions parallel to the coordi-

nate axes.

De�nition 2.1. The partial derivative of f (x, y) with respect to x is the rate of change of f with

respect to x keeping y constant. We write

∂f

∂x

∣∣∣∣
y

= lim
δx→0

f (x+ δx, y)− f (x, y)

δx

The de�nition of ∂f/∂y|x is similar. We shall often omit explicitly writing the variable(s) we

hold constant, where there is minimal danger or confusion - in general, if f = f (x1, x2, · · · , xn) then

we assume ∂f/∂xi means holding all xj constant for j 6= i. Note that it makes no sense to take a

derivative with respect to a variable held constant!

It is important to note that the partial derivative is still a function of both x and y, like f . We

denote the partial derivative with respect to x at (x0, y0) by

∂f

∂x

∣∣∣∣
x=x0,y=y0

or
∂f

∂x
(x0, y0) or

∂f

∂x

∣∣∣∣
y

(x0, y0)

depending on what looks most readable. The unfortunate ambiguity in the appearance of these nota-

tions is not usually too much of a problem.

Example 2.2. For example, if

f (x, y) = x2 + y3 + exy
2

15



then we have

∂f

∂x

∣∣∣∣
y

= 2x+ y2exy
2

∂f

∂y

∣∣∣∣
x

= 3y2 + 2xyexy
2

Leaving out the explicit subscripts, and extending Leibniz's notation to partial derivatives, we

also get

∂2f

∂x2
= 2 + y4exy

2

∂2f

∂y2
= 6y + 2xexy

2

+ 4x2y2exy
2

∂2f

∂x∂y
≡ ∂

∂x

[
∂f

∂y

]
= 2yexy

2

+ 2xy3exy
2

∂2f

∂y∂x
≡ ∂

∂y

[
∂f

∂x

]
= 2yexy

2

+ 2xy3exy
2

Note that the so-called mixed second partial derivatives mean

∂2f

∂x∂y
≡ ∂

∂x

∣∣∣∣
y

∂f

∂y

∣∣∣∣
x

which is very cumbersome to write out.

It is actually a general rule that
∂2f

∂x∂y
=

∂2f

∂y∂x

so long as we are working in �at space, and all of the second partial derivatives are continuous - in

general, it is called Clairaut's theorem or Schwarz's theorem:

Theorem 2.3 (Clairaut). If a real-valued function f (x1, x2, · · · , xn) with n real parameters xi (so

f maps Rn → R) has continuous second partial derivatives at (a1, a2, · · · , an) then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

at that point.

We will not prove this theorem here, but we usually assume that this is valid without worrying

about the details.

Note that while we will often neglect to indicate which variables are �xed, assuming all those not
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mentioned are, it does make a di�erence.

Example 2.4. If f (x, y, z) = xyz then

∂f

∂x
≡ ∂f

∂x

∣∣∣∣
y,z

= yz

but
∂f

∂x

∣∣∣∣
y

= y

(
x
∂z

∂x
+ z

)
This assumes that we have some idea of z varying with x - typically, we might look at the values

of f on a surface in 3 dimensional space, so we could have z = z (x, y) on that surface.

Remark. Another very useful notation for partial derivatives is to write

fx ≡
∂f

∂x

and then for higher derivatives,

f xy ≡ ∂2f

∂y∂x

≡ ∂

∂y

(
∂f

∂x

)

Note that the order of the subscripts is the order that the derivatives are taken in, not the order

they are written in, in Leibniz's notation.

We will not make much use of this notation in this course, preferring to keep subscripts for indexing.
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2.1 The Chain Rule

(a) Surface

∆x

∆y

(b) Contours and a short path

Figure 2.1: An example of a family

Imagine we are walking across a hilly landscape, like that shown in Figure 2.1, where the height at any

point is given by z = f (x, y). Say we walk a small distance δx in the x direction, and then a small

distance δy in the y direction. Then the total change in height is

δf = f (x+ δx, y + δy)− f (x, y)

= [f (x+ δx, y + δy)− f (x+ δx, y)]

+ [f (x+ δx, y)− f (x, y)]

But then, if we assume f is reasonably smooth in both the x and y directions around the point

(x, y), we can deduce that

δf =
∂f

∂y
(x+ δx, y) · δy + o (δy)

+
∂f

∂x
(x, y) · δx+ o (δx)

=
∂f

∂y
(x, y) · δy + o (δx) · δy + o (δy)

+
∂f

∂x
(x, y) · δx+ o (δx)

=
∂f

∂y
δy +

∂f

∂x
δx+ o (δx, δy)

where the term o (δx, δy) is taken as meaning a collection of terms that tend to 0 faster than either δx

or δy when δx and δy tend to 0.

Informally, when we take the limit δx, δy → 0 we get an expression for an `in�nitesimal' change in
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f , given in�nitesimal changes in x and y, which can be written as

df =
∂f

∂y
dy +

∂f

∂x
dx

which is called the chain rule in di�erential form (terms with upright `d's, like df , are di�erentials).

We write this on the understanding that we will either sum the di�erentials, as in

ˆ
· · · df =

ˆ
· · ·
(
∂f

∂y
dy +

∂f

∂x
dx

)
or divide by another in�nitesimal, as in

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

or
∂f

∂t
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t

before taking the limit. These last forms are technically the correct way of stating the chain rule.

The �rst is best viewed as saying that, if we walk along a path x = x (t) and y = y (t) as time t

passes, then the rate at which f changes along the path (x (t) , y (t)) is given by the above formula for

df/dt. The second form assumes that we have f = f (x (t, u) , y (t, u)) so that our path depends on

two variables t and u; we can then look at the rate of change of f along the path as we vary one of

these parameters. For example, we might have a family of paths indexed by u, with each path being

parameterized by time t. We can then ask, given that we stick to the path given by u0, what is the

rate of change ∂f/∂t along this path?

The �rst formula can be derived from the original expression in terms of o (δx, δy) by taking the

following limit with f = f (x (t) , y (t)):

df

dt
= lim

δt→0

δf

δt

= lim
δt→0

[
∂f

∂x

δx

δt
+
∂f

∂y

δy

δt
+
o (δx, δy)

δt

]

Then provided ẋ = dx
dt is �nite, we have δx u ẋδt and so if ε = o (δx) then ε = o (δt). From this it

follows that
df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

as required.

A special case arises from specifying a path by y = y (x). Then, along this path, we have

df

dx
=
∂f

∂x
+
∂f

∂y

dy

dx

Remark. If we add more variables, the chain rule is extended simply by adding more terms to the sum.
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So if f = f (x1, x2, · · · , xn) we would discover, for example, that

df

dt
=

∂f

∂x1

dx1

dt
+

∂f

∂x2

dx2

dt
+ · · ·+ ∂f

∂xn

dxn
dt

One very useful way of looking at this expression in general is to look at the vector x = (x1, x2, · · · , xn),

and to realize that if we had some other vector

v =

(
∂f

∂x1
,
∂f

∂x2
, · · · , ∂f

∂xn

)
then we could simply write the chain rule as a dot product, making it look much more like the original

chain rule:
df

dt
= v · dx

dt

This is exactly what we do in the next section.

2.2 Two-Dimensional Calculus

In this section, we see how some key ideas to do with di�erentiation from basic calculus carry over to

a higher dimensional case (though we only work with two dimensions for simplicity).

2.2.1 Directional derivatives

Consider a vector displacement ds = (dx,dy) like that shown as the arrow in Figure 2.1. The change

in f (x, y) over that displacement is

df =
∂f

∂x
dx+

∂f

∂y
dy

= (dx,dy) ·
(
∂f

∂x
,
∂f

∂y

)
= ds ·∇f

where we de�ne∇f (which we read `grad f ' or `del f ' - the symbol is a nabla) to satisfy this relationship:

De�nition 2.5. In two dimensional Cartesian coordinates,

gradf ≡∇f ≡
(
∂f

∂x
,
∂f

∂y

)

Remark. Note that (∇f) (x, y) is a function of position, or a �eld - since ∇f is a vector, it is a vector

�eld.

Note that if we write ds = ŝds where |ŝ| = 1 so that ŝ is a unit vector, we have

df

ds
= ŝ ·∇f
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which is the directional derivative of f in the direction of ŝ.

This gives us the striking relationship ∣∣∣∣dfds
∣∣∣∣ = |∇f | cos θ

so that the rate of change of f at a point varies exactly like cos θ as we look in di�erent directions at

angle θ. We can make a few observations based on this:

(i) maxθ
df
ds = |∇f | so ∇f always has a magnitude equal to maximum rate of change of f (x, y) in

any direction.

(ii) The direction of ∇f is the direction in which f increases most rapidly - hence `∇f always points

uphill'.

(iii) If ds is a displacement along a contour of f , then by de�nition

df

ds
= 0 ⇐⇒ ŝ ·∇f = 0

⇐⇒ ∇f is orthogonal to the contour

so contours correspond exactly to lines at right-angles to the gradient ∇f .

2.2.2 Stationary points

The last point we noted above tells us that there is always one direction in which df
ds is zero - but what

about true maxima and minima?

Local maxima and minima must have df
ds = 0 in all directions:

ŝ ·∇f = 0 ∀ŝ

⇐⇒ ∇f = 0

⇐⇒ ∂f

∂x
=
∂f

∂y
= 0

This is probably not a very surprising result, but like the idea of a one-dimensional stationary

point, it is fundamental.

The cases of a local maximum and a local minimum are displayed in Figures 2.2 and 2.3 respectively,

along with the contour plots for the shown surfaces. Note that at a two-dimensional local maximum,

the function is at a maximum in both the x and y directions, and vice versa - similarly for minima.

However, we get an interesting new case when the function is a maximum along one direction, and a

minimum along another. This case is shown in Figure 2.4, and is one example of a s-called saddle point

- this generalizes the idea of the one-dimensional case of a curve which is stationary without being an

extremum of any kind (like at x = 0 for the curve y = x3).
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(a) Surface (b) Contours

Figure 2.2: An example of a local maximum

(a) Surface (b) Contours

Figure 2.3: An example of a local minimum
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(a) Surface (b) Contours

Figure 2.4: An example of a saddle point

2.2.3 Multidimensional Taylor series

Once we have developed ideas of directional di�erentiation, and looked at �nding stationary points,

it is natural to try to extend the idea of using the second derivative to classify these points as shown

above. Since we formally deduce the nature of stationary points in the one-dimensional case by looking

at the second-order terms in the local Taylor series for the function about the point, it will be useful

to have an expression analogous to

f (x) = f (a) + (x− a) f ′ (a) +
1

2
(x− a)

2
f ′′ (a) + · · ·

Therefore, we will now deduce an expression for the Taylor series of a function f (x) for a vector

x (thinking mainly of the two-dimensional case, though the same process extends easily to higher

dimensions). Then, in section 2.2.4, we will discover how to actually classify these points.

Since we have no techniques for dealing with vector series yet, it is natural to work in the case

we already know about: the behaviour of f (x) along an arbitrary line x0 + sŝ through the point

x0. Consider a small �nite displacement δs = (δs) ŝ along this line. Then the Taylor series for

f (x) = f (x (s)) along this line is given by

f (x) = f (x0 + δs) = f (x0) + δs
df

ds
+

1

2
(δs)

2 d2f

ds2
+ · · ·

= f (x0) + (δs) ŝ ·∇f + (δs)
2 · (ŝ ·∇) (ŝ ·∇) f + · · ·

= f (x0) + (δs) ŝ ·∇f + (δs)
2 · (ŝ ·∇)

2
f + · · ·

where

(δs) ŝ ·∇f = δx
∂f

∂x
+ δy

∂f

∂y
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and

(δs)
2 · (ŝ ·∇)

2
f = (δs)

2 ·
[
ŝx

∂

∂x
+ ŝy

∂

∂y

]2

f

= (δs)
2 ·
[
ŝ2
x

∂2f

∂x2
+ ŝxŝy

∂2f

∂x∂y
+ ŝy ŝx

∂2f

∂y∂x
+ ŝ2

y

∂2f

∂y2

]
= (δx)

2
fxx + (δx) (δy) fyx + (δy) (δx) fxy + (δy)

2
fyy

recalling that

∇ ≡
(
∂

∂x
,
∂

∂y

)
Remark. Note that the power of two after the operator [ŝx∂/∂x+ ŝy∂/∂y] indicates that it is applied

twice, not that the result is squared.

To simplify this expression, it is natural to take advantage of the new vector notation we have

adopted, and write this last term as follows:

(δs)
2 · (ŝ ·∇)

2
f ≡

(
δx δy

)(fxx fxy

fyx fyy

)(
δx

δy

)
≡ δs · (∇∇f) · δs

De�nition 2.6. The matrix

∇∇f =

(
fxx fxy

fyx fyy

)
is called the Hessian matrix of the function f .

Remark. We do not write ∇2f for this matrix because this notation has a special meaning; it is the

Laplacian ∇ · (∇f) which is a scalar, not a matrix.

Thus in coordinate-free form we have the Taylor series

f (x) = f (x0) + δx ·∇f (x0) +
1

2
δx · [∇∇f ] · δx + · · ·

For the case of two-dimensional Cartesian coordinates, with continuous second partial derivatives,

we can write

f (x, y) = f (x0, y0) + (x− x0) fx + (y − y0) fy

+
1

2

[
(x− x0)

2
fxx + 2 (x− x0) (y − y0) fxy + (y − y0)

2
fyy

]
+ · · ·

With this expression, we can move on to work out the behaviour of f near a stationary point.
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2.2.4 Classi�cation of stationary points

Obviously, near a stationary point, by de�nition ∇f = 0. Therefore, the behaviour of f is given by

f (x) = f (x0) +
1

2
δx ·H · δx + · · ·

where we have written H = ∇∇f for the Hessian.

In this section, we will not consider the cases where second derivatives vanish - therefore, the

properties of the matrix H are all that matter.

At a minimum, we must have f (x) > f (x0) for all su�ciently small δx, regardless of which

direction δx points in - that implies that

δx ·H · δx > 0 ∀δx 6= 0

noting that the magnitude of δx is irrelevant to the sign of the result. Similarly, for a maximum

δx ·H · δx < 0 ∀δx 6= 0

and at a saddle point, δx ·H · δx takes both signs.

These properties of the matrix are given names:

De�nition 2.7. If v†Av = v · (Av) > 0 for all vectors v not equal to the zero vector, then the

matrix A is said to be positive de�nite. We sometimes write A > 0.

If v†Av < 0 for all v 6= 0, then A is said to be negative de�nite. Similarly, we sometimes write

A < 0.

An inde�nite matrix A is one for which vectors v and w exist with

v†Av > 0 > w†Aw

In order to understand how we can �nd out whether a matrix is positive de�nite etc., it is helpful

to �rst consider the case fxy = fyx = 0, so that the matrix A is diagonal:

A =

(
fxx 0

0 fyy

)

v†Av =
(
δx δy

)(fxx 0

0 fyy

)(
δx

δy

)
= fxx (δx)

2
+ fyy (δy)

2

In this case, it is clear that v†Av is always strictly positive for v 6= 0 if and only if fxx > 0 and

fyy > 0. Similarly, A is negative if and only if fxx, fyy < 0, and inde�nite if one is negative and the

other positive. (This is where we omit the case of a zero on the diagonal - we would have to consider

higher-order behaviour in that direction in order to make any useful deductions.)

It is interesting that, in this case, only the behaviour of f along the two lines f (x, y0) and f (x0, y)
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is relevant - knowing the values of the second derivative along the axes allows us to deduce this value

along any other axis, just like in the case of∇f and the �rst derivatives. It is natural to wonder whether

there is in general a single pair of numbers (or a single pair of axes) associated with the matrix that

determine whether it is positive de�nite and so on - in fact, there is a natural generalization of this to

eigenvalues and eigenvectors.

Since A is real and symmetric (if fxy = fyx), it can be diagonalized (see the course on Vectors and

Matrices - this is the spectral theorem) as it has a full set of orthogonal eigenvectors with associated

eigenvalues λi. In the general case, writing vectors in the basis of eigenvectors, we always have

δx ·H · δx =
(
δx δy · · · δz

)

λx 0 · · · 0

0 λy · · · 0
...

...
. . .

...

0 0 · · · λz



δx

δy
...

δz


= λx (δx)

2
+ λy (δy)

2
+ · · ·+ λz (δz)

2

so we have the following key result:

Lemma 2.8. H is positive de�nite ⇐⇒ all eigenvalues λx, · · · , λz are positive. Similarly for the

negative de�nite case.

In order to avoid having to explicitly work out the eigenvalues of the matrix each time we do this,

the following result, called Sylvester's criterion, is very useful:

Lemma 2.9 (Sylvester's criterion). An n× n real symmetric1 matrix is positive de�nite ⇐⇒ the

determinants of the leading minors, or the upper left 1× 1, 2× 2, · · · , and n× n matrices, are all

positive.

So for example, in the case of a two dimensional Hessian with non-zero determinant (so it has no

zero eigenvalues), to test for a minimum it is enough to test that fxx > 0 and∣∣∣∣∣ fxx fxy

fyx fyy

∣∣∣∣∣ = fxxfyy − fxyfyx > 0

Similarly (as can be seen by just negating the entire matrix H) the matrix is negative de�nite if

and only if the �rst determinant is negative, fxx < 0, the second is positive, and so on in an alternating

fashion. Finally, any other pattern than + + + + · · · and −+−+ · · · results in an inde�nite matrix.

Combining these results, we have:

Theorem 2.10. The pattern of signs of the determinants in a Hessian at a stationary point with

non-zero determinant determines the nature of the point as follows:

1Or more generally, Hermitian.
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+ + + + · · · The Hessian is positive de�nite, and the point is a minimum.

−+−+ · · · The Hessian is negative de�nite, and the point is a maximum.

other The Hessian is inde�nite, and the point is a saddle point.

Example 2.11. Find and categorize the stationary points of the function

f (x, y) = 8x3 + 2x2y2 − x4y4 − 2− 6x

First, we calculate the two �rst partial derivatives

fx = 24x2 + 4xy2 − 4x3y4 − 6

fy = 4x2y − 4x4y3

so that the gradient is

∇f =

(
24x2 + 4xy2 − 4x3y4 − 6

4x2y − 4x4y3

)
To �nd the stationary points, we need to solve ∇f = 0. From the fy = 0 equation we have

4x2y − 4x4y3 = 0

4x2y
(
1− x2y2

)
= 0

and therefore (x, y) = (0, ?) , (?, 0) ,
(
x, 1

x

)
,
(
x,− 1

x

)
.

x = 0: fx = −6 = 0. No solutions.

y = 0: fx = 24x2 − 6 = 0. Solutions x = ± 1
2 .(

x, 1
x

)
: fx = 24x2 + 4 1

x − 4 1
x − 6 = 0. Solutions x = ± 1

2 and y = ±2.(
x,− 1

x

)
: fx = 24x2 + 4 1

x − 4 1
x − 6 = 0 again. Solutions x = ± 1

2 and y = ∓2.

Hence the six stationary points are located at
(
± 1

2 , 0
)
,
(
± 1

2 ,±2
)
and

(
± 1

2 ,∓2
)
.

Now to classify these points, we must calculate the Hessian:

H = ∇∇f =

(
fxx fxy

fyx fyy

)

=

(
48x+ 4y2 − 12x2y4 8xy − 16x3y3

8xy − 16x3y3 4x2 − 12x4y2

)

= 4

(
12x+ y2 − 3x2y4 2xy

(
1− 2x2y2

)
2xy

(
1− 2x2y2

)
x2
(
1− 3x2y2

) )

Hence we have:
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(
1
2 , 0
)
: Here

H = 4

(
6 0

0 1
4

)
which is clearly positive de�nite, so this is a minimum.(

− 1
2 , 0
)
: Here

H = 4

(
−6 0

0 1
4

)
which is clearly inde�nite, so this is a saddle point.(

1
2 , 2
)
: Here

H = 4

(
−2 −2

−2 − 1
2

)
which has fxx < 0 and a determinant which is also negative, and so is also inde�nite,

and hence this is a saddle point.(
1
2 ,−2

)
: Now

H = 4

(
−2 2

2 − 1
2

)
which again is inde�nite, so this is a third saddle point.(

− 1
2 , 2
)
: This time

H = 4

(
−14 2

2 − 1
2

)
which has fxx < 0 and a positive determinant - hence this is negative de�nite, and the

point is a maximum.(
− 1

2 ,−2
)
: Finally

H = 4

(
−14 −2

−2 − 1
2

)
which is also negative de�nite, corresponding to a maximum.

Remark. We could have saved time by noting the symmetry of the function under y → −y; the layout
and character of stationary points must also be symmetrical across the x-axis.

In fact, this gives us all the information needed to make a sketch of the contours. Note that near

a stationary point, the Taylor series tells us that the function is approximately of the form

f (x) u f (x0) +
1

2

[
(δx1)

2
λ1 + (δx2)

2
λ2

]
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with respect to the principal axes (the eigenvectors) of the Hessian. So the contours are solutions of

f (x) = f (x0) +
1

2

[
(δx1)

2
λ1 + (δx2)

2
λ2

]
= constant

(δx1)
2
λ1 + (δx2)

2
λ2 = constant

But clearly if λ1, λ2 both have the same sign, these are simply ellipses, rotated between the principal

axes and the standard axes; and if they have di�erent signs, then these are hyperbolae.

Having drawn the local behaviour of the contours near all stationary points, we must then �ll in

the space (and join up the hyperbolic lines) without creating any new stationary points - that is, no

more contours must cross, and no more closed loops may be formed.

The actual contours and a three-dimensional plot of the function are shown in Figure 2.5.

(a) Contours (b) Surface

Figure 2.5: Classi�cation of stationary points

2.3 Change of Variables

A very common task in mathematics is to transform the way we write down a problem via a change

of variables. As with the chain rule, we already know how to deal with this in the single-variable case,

because this is precisely the chain rule! We let f (x) = f (x (t)) and then

df

dt
=

df

dx
· dx

dt

so
df

dx
=

df
dt/dx

dt
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which is usually easily calculated as a function of t.

The multiple dimensional case, as might be expected, requires the multi-dimensional chain rule.

For example, if we wrote x = x (r, θ) and y = y (r, θ) as we would when converting from Cartesian

coordinates (x, y) to polar coordinates (r, θ), then we would have f as a function of r and θ:

f = f (x (r, θ) , y (r, θ))

Then the chain rule would give us

∂f

∂r

∣∣∣∣
θ

=
∂f

∂x

∂x

∂r

∣∣∣∣
θ

+
∂f

∂y

∂y

∂r

∣∣∣∣
θ

where we have explicitly stated, when taking the partial derivative of f with respect to r for example,

that we are not holding x or y constant, but instead the accompanying variable θ.

Example 2.12. If f = xy and x = r cos θ and y = r sin θ, then

f = r2 sin θ cos θ

and clearly
∂f

∂r

∣∣∣∣
θ

= 2r sin θ cos θ

We can check the chain rule:

∂f

∂r

∣∣∣∣
θ

=
∂f

∂x

∂x

∂r

∣∣∣∣
θ

+
∂f

∂y

∂y

∂r

∣∣∣∣
θ

= y · cos θ + x · sin θ

= r sin θ cos θ + r sin θ cos θ

= 2r sin θ cos θ

as expected.

2.4 Implicit Di�erentiation and Reciprocals

One of the other things we can now generalize is the idea of implicit di�erentiation. Classically, this

means that we have an expression like

F (x, y) = constant

and we deduce that dF
dx = 0 for instance, using the chain rule to calculate

d

dx
(xy) = y + x

dy

dx

and so on.
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Now imagine a surface in three-dimensional space, speci�ed by

F (x, y, z) = constant

over space. We can write this as

F (x, y, z (x, y)) = constant

though this is a slight abuse of notation because z (x, y) is not necessarily single-valued there may be

multiple points above and/or below the point (x, y, 0) in the xy-plane.

The di�erential form of the chain rule (again best used as a mnemonic) is

dF =
∂F

∂x
dx+

∂F

∂y
dy +

∂F

∂z
dz

Then at any such point, by the chain rule, we get

∂F

∂x

∣∣∣∣
y

=
∂F

∂x

∂x

∂x

∣∣∣∣
y

+
∂F

∂y

∂y

∂x

∣∣∣∣
y

+
∂F

∂z

∂z

∂x

∣∣∣∣
y

where the terms like ∂F/∂x have both y and z held constant. Clearly,

∂x

∂x

∣∣∣∣
y

= 1

and
∂y

∂x

∣∣∣∣
y

= 0

so this gives us
∂F

∂x

∣∣∣∣
y

=
∂F

∂x
+
∂F

∂z

∂z

∂x

∣∣∣∣
y

and hence
∂z

∂x

∣∣∣∣
y

= −
∂F/∂x
∂F/∂z

where both terms on the right have the variables not involved held constant (so y, z for the top term

and x, y for the bottom term).

It is very important to note the introduction of the negative sign here: there is not a simple

algebraic manipulation giving rise to this relationship (`cancelling the ∂F terms' for example).

These give rise to the interesting relationship that for any 2D surface in 3D space,

∂x

∂y

∣∣∣∣
z

∂y

∂z

∣∣∣∣
x

∂z

∂x

∣∣∣∣
y

= −1

Reciprocals

In the same sort of way that the above negative sign confounds our expectations from single-variable

theory, the rules for inverting partial derivatives are not entirely obvious.
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The normal reciprocal rules do hold provided we keep the same variables constant.

For example, in the transformation (x, y)→ (r, θ) we have

∂r

∂x
6≡ 1

∂x/∂r

because on the left hand side we are assuming that y is held constant, whilst on the right hand side

we are assuming that θ is held constant.

The correct statement would be
∂r

∂x

∣∣∣∣
y

=
1

∂x/∂r|y
which is an altogether di�erent statement. The meaning of the term on the bottom of the right hand

side would be `how fast does x change as I increase r at a steady rate, given that I also adjust θ so

that y remains constant?'

Example 2.13. To see this explicitly for the case of polar coordinates, write x = r cos θ and

y = r sin θ so that r =
√
x2 + y2 and θ = tan−1 (y/x). Then

∂r

∂x

∣∣∣∣
y

=
x√

x2 + y2

=
r cos θ

r
= cos θ

and
∂x

∂r

∣∣∣∣
y

=
∂ (r cos θ)

∂r

∣∣∣∣
y

and if y = r sin θ is constant, then sin θ = y
r so cos θ =

√
1−

(
y
r

)2
. Hence we can calculate

∂x

∂r

∣∣∣∣
y

=

∂

(
r

√
1−

(
y
r

)2)
∂r

∣∣∣∣∣∣∣∣
y

=
∂
(√

r2 − y2
)

∂r

∣∣∣∣∣∣
y

=
r√

r2 − y2

=
1√

1−
(
y
r

)2
=

1√
1− sin2 θ

=
1

cos θ
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as required. By contrast,
∂x

∂r

∣∣∣∣
θ

= cos θ 6≡ 1

cos θ

2.5 Di�erentiation of Integrals with Respect to Parameters

Consider as family of functions f = f (x, c), for which we have a di�erent graph f = fc (x) for each c.

Then we can de�ne a corresponding family of integrals,

I (b, c) =

ˆ b

0

f (x, c) dx

Then by the fundamental theorem of calculus,

∂I

∂b
= f (b, c)

To calculate the rate of change with respect to c we do the following:

∂I

∂c
= lim

δc→0

1

δc

[ˆ b

0

f (x, c+ δc) dx−
ˆ b

0

f (x, c) dx

]

= lim
δc→0

[ˆ b

0

f (x, c+ δc)− f (x, c)

δc
dx

]

=

ˆ b

0

∂f

∂c

∣∣∣∣
x

dx

assuming that we are allowed to exchange limits and integrals like this (this result is actually always

valid if both f and ∂f/∂c are continuous over the region of integration [0, b], and the region of c in

which we take the derivative2).

So if we take

I (b (x) , c (x)) =

ˆ b(x)

0

f (y, c (x)) dy

then we get, via the chain rule,

dI

dx
=

∂I

∂b

db

dx
+
∂I

∂c

dc

dx

= f (b, c) b′ (x) + c′ (x)

ˆ b

0

∂f

∂c

∣∣∣∣
y

dy

2This result is called the Leibniz integral rule, or Leibniz's rule for di�erentiation under the integral sign. A sophis-
ticated result called the Dominated convergence theorem gives the general case for a more sophisticated type of integral
called the Lebesgue integral (we are using the Riemann integral).
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For example, if I (x) =
´ x

0
f (x, y) dy then

dI

dx
= f (x, x) +

ˆ x

0

∂f

∂x

∣∣∣∣
y

dy
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3 First-Order Equations

In this section, we will consider both di�erential equations and di�erence equations (also known as

recurrence relations) of the �rst-order, in which no more than one derivative, or one previous term of

a sequence, appears.

It will be very useful to have a �rm grasp of one particular function:

3.1 The Exponential Function

Consider f (x) = ax, for some constant a > 0.

The rate of change of such a map can be calculated as follows:

df

dx
= lim
h→0

ax+h − ax

h
= lim

h→0

ax
(
ah − 1

)
h

= ax lim
h→0

ah − 1

h
= ax · λ

for some constant λ (independent of x) - note that this limit must converge to some value, since this

map is obviously di�erentiable3.

De�nition 3.1. The function expx ≡ ex is de�ned by choosing a so that λ = 1, i.e. df
dx = f . We

write e = a for this case.

Remark. Let the inverse of the function u = ex be given by x = lnu. Then if we write y = ax = ex ln a

it becomes clear via the chain rule that

dy

dx
= (ln a) ex ln a

= (ln a) ax

= (ln a) y

so that λ = ln a.

One other limit we will make use of is

lim
n→∞

(
1 +

x

n

)n
= ex

Exercise 3.2.

(i) Prove that, for x > 0,
d

dx
lnx =

1

x

(Hint : Use the inverse function rule.)

3We do not show this formally in this course - in Analysis I we consider ax to be de�ned in terms of ex, and de�ne
ex in terms of its power series ex = 1 + x+ 1

2
x2 + 1

3!
x3 + · · · , and derive all of these properties from here.
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(ii) Write down the �rst few terms in the Taylor expansions of ex and ln (1 + x).

(iii) Use the Taylor expansion of the following expression to evaluate it:

lim
n→∞

ln
(

1 +
x

n

)n
(iv) Why does it follow that

lim
n→∞

(
1 +

x

n

)n
= ex?

Using the fundamental theorem of calculus, and the �rst result from this exercise, we have that

ˆ b

a

1

x
dx = [lnx]

b
a

if a and b are both strictly positive.

Now if a and b are both negative, then we can compute the integral either by symmetry, or formally

by the change of variables u = −x,

ˆ b

a

1

x
dx =

ˆ −b
−a

1

(−u)
· (−1) · du

=

ˆ −b
−a

1

u
du

= ln (−b)− ln (−a)

= ln |b| − ln |a|

= [ln |x|]ba

Because of these two facts, we commonly write

ˆ
1

x
dx = ln |x|

However, this assumes that x does not change sign or pass through 0 over the region of integration

- if it does, then the integral is unde�ned.

A better way of writing this is ˆ b

a

1

x
dx = ln

(
b

a

)
which is valid for the same a and b but which avoid using the modulus signs |x|. A very useful result

which holds in general for valid complex paths (not passing through 0) is that

e
´ b
a

1
xdx =

b

a

Example 3.3. Both integrals in

ˆ 2

1

x−1dx =

ˆ −2

−1

x−1dx = ln 2
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are de�ned, but ˆ 2

−1

x−1dx

is not.

3.2 First-Order Linear ODEs

It is often best to begin a new topic with an example, so that is exactly what we shall do.

Example 3.4. Solve 5y′ − 3y = 0.

We can easily solve this equation because it is separable:

y′

y
=

3

5ˆ
dy

y
=

ˆ
3

5
dt

ln |y| =
3

5
t+ C

y = De
3
5 t

This is the only function of this form. y = Ae3/5x is a solution for any real A, including A = 0

so y = 0. In this family of solution curves, or trajectories for one-dimensional cases like this, it is

possible to pick out one particular solution using a boundary condition, like y = y0 at x = 0, so

that A = y0.

In fact, there are no other solutions. To see this, let u (t) be any solution, and compute the

derivative of ue−
3
5 t:

d

dt

(
ue−

3
5 t
)

= e−
3
5 t

du

dt
− 3

5
e−

3
5 tu

= e−
3
5 t

[
du

dt
− 3

5
u

]
= 0

It is a key result from our fundamental work that ue−
3
5 t is therefore a constant k, so indeed

u = ke
3
5 t as required. It follows that there is a unique solution if we are given a boundary condition

like those above.

It is not hard to guess, from the way that the numbers 3 and 5 appeared in our solution, that any

similar equation has a solution of the form eλt, and in fact all solutions are of the form keλt. In fact,

any linear, homogeneous ODE with constant coe�cients has families of solutions of the form eλt. We

will de�ne what all of these terms mean:
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De�nition 3.5. An nth order linear ODE has the form

cn (x)
dny

dxn
+ cn−1 (x)

dn−1y

dxn−1
+ · · ·+ c1 (x)

dy

dx
+ c0 (x) y = f (x)

A homogeneous equation has f (x) ≡ 0 so that y = 0 is a solution.

A linear ODE with constant coe�cients has ci (x) = ci (0) = constant for all i.

There are a few important properties of such equations. The following two are the most important

for us:

(i) Linearity and homogeneity mean that any multiple of a solution is another solution, as is the sum

of any two solutions - that is, any linear combination of solutions is another solution. (Hence

functions like y = Aeλ1x +Beλ2x + · · · will always be a solution if the corresponding basic terms

are.)

(ii) An nth order linear di�erential equation has (only) n linearly independent solutions - that is,

given n + 1 solutions we can always rewrite one of them as a linear combination of the others.

(Recall y = Ae3/5x was the general solution of the above �rst-order equation.)

The �rst fact is easy to prove, whereas the second is not obvious. We will begin to see how to talk

about independence in section 4.3, and prove in section 6 all the results we need about solutions to

higher-dimensional equations. For the case of �rst-order equations, we will brie�y discuss existence

and uniqueness of solutions in section 3.7. For now, however, we will leave these ideas to one side.

It is, however, useful to see why the solutions can be expressed in exponential form. The key idea is

that of an eigenfunction of a di�erential operator (which is basically the left-hand side of the above).

For our purposes:

De�nition 3.6. A di�erential operator D [y] acts on a function y (x) to give back another function

by di�erentiation, multiplication and addition of that function - for example

D [y] = x
d2y

dx2
− 3y.

An eigenfunction of a di�erential operator D is a function y such that

D [y] = λy

for some constant λ, which is called the eigenvalue.

Remark. The idea is very like that of eigenvectors and eigenvalues of matrices.

The important point to realize is that y = eλx is an eigenfunction of our �rst-order linear di�erential

operators with constant coe�cients, because

d

dx
eλx = λeλx
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So in solving ay′ + by = 0 all we need to do is solve

(aλ+ b) eλx = 0

which gives

λ = − b
a

as we found above.

All we are really doing in solving these unforced equations is trying to �nd eigenfunctions with

eigenvalue 0, to give the zero on the right-hand side4.

3.2.1 Discrete equation

The above equation

5y′ − 3y = 0

(say with the boundary condition y = y0 at x = 0) has analogous discrete equations in the form of

di�erence equations, where we solve for the values of some sequence yn meant to approximate y at

time steps like yn = y (nh).

The so-called (simple) Euler approximation substitutes y ↔ yn and y′ ↔ yn+1−yn
h where we take

discrete steps of size h, giving x = nh.

This gives us

5
yn+1 − yn

h
− 3yn = 0

yn+1 =

(
1 +

3h

5

)
yn

yn =

(
1 +

3h

5

)n
y0

Using our equation for the step size, we note h = x
n so that we can eliminate h and return to having

a dependence on

y (x) = yn = y0

(
1 +

3

5

x

n

)n
and if we now take the limit h→ 0 or equivalently n→∞, so that we re�ne the step size, we retrieve

y (x) = y0 lim
n→∞

(
1 +

3x

5
· 1

n

)n
= y0e

3x
5

which is the same as the equation we originally established (see 3.2). This is not very surprising, because

the limit h→ 0 corresponds, in the equation we are solving, to the limiting equation 5 dy
dx − 3y = 0.

4If you know some linear algebra (like the material from the Vectors & Matrices course), then you might �nd it
interesting to think of this as trying to �nd a basis for the kernel or null-space of the di�erential operator D.
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3.2.2 Series solution

Another way of �nding a solution (if a solution of this form exists - see the section on series solutions

later in this course) is to assume

y =

∞∑
n=0

anx
n

so that we also have

y′ =

∞∑
n=0

annx
n−1

Now if we take our equation 5y′ − 3y = 0 we note that we can rewrite this as

5 (xy′)− 3x (y) = 0

(the equidimensional form of the equation, in which the bracketed terms all have the same dimensions,

with derivatives with respect to x balanced by multiplications by x - though now we have non-constant

coe�cients) and hence the equation becomes∑
an
[
5nx · xn−1 − 3x · xn

]
= 0∑

anx
n [5n− 3x] = 0

Now in this equation, since the left side is identically 0 for all x, we can compare the coe�cients of

xn. This gives

5n · an − 3an−1 = 0

for all n including n = 0 (if we write a−1 = 0).

n = 0: The �rst equation we get from this is that 0 ·a0 = 0, which symbolizes the fact that we may

consider a0 to be arbitrary - remember we have a constant A or y0 in our other solutions.

n > 0: In this case, we can divide through by n to obtain

an =
3

5n
an−1

=
3

5n
· 3

5 (n− 1)
an−2

= · · ·

=

(
3

5

)n
· 1

n!
a0

Hence we have

y = a0

∞∑
n=0

(
3

5

)n
· 1

n!
xn

which is a valid expression for the solution. However, in this case, we have the good fortune to be able
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to identify it in closed form:

y = a0

∞∑
n=0

1

n!

(
3x

5

)n
= a0e

3x
5

Remark. In general, there is no reason to expect a closed-form solution, so the previous expression

would su�ce as an answer.

3.3 Forced (Inhomogeneous) Equations

There are a few ways to classify di�erent forcing terms f (x). We will look at 3 di�erent types of

forcing for equations with constant coe�cients in this section:

(i) Constant forcing: e.g. f (x) = 10

(ii) Polynomial forcing: e.g. f (x) = 3x2 − 4x+ 2

(iii) Eigenfunction forcing: e.g. f (x) = ex

We will solve each case with an example to illustrate how to handle these problems.

Remark. We will see in section 4.4 (which treats the second-order case) and later in 6.5 (which is

the general treatment) that there are ways of solving any problem with an inhomogeneity with some

cleverly chosen integrals.

3.3.1 Constant forcing

Example 3.7. 5y′ − 3y = 10

Note that there is guaranteed to be a steady or equilibrium solution, in this case given by the

particular solution (PS ) yp = −10/3, so that y′p = 0.

It turns out that a general solution can be written

y = yc + yp

where yc is the complementary function (CF ) that solves the corresponding unforced equation - so

since we already know yp = Ae
3x
5 , we have a general solution of

y = Ae
3x
5 − 10

3

The boundary conditions can then be applied to this general solution (not the complementary

function).

So the general technique is to �nd the equilibrium solution which perfectly balances the forced equation,

and then add on the general solution. This approach is actually fairly general.
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3.3.2 Polynomial forcing

Example 3.8. 5y′ − 3y = 3x2 − 4x+ 2

It is hopefully clear that there is no constant solution to this equation, since the left-hand side

must vary to give the polynomial behaviour on the right-hand side. But the above approach is

suggestive: could we �nd a quadratic to match the right-hand side?

Let us assume yp = ax2 + bx+ c is a solution to this equation. Then

5y′ − 3y = (−3a)x2 + (10a− 3b)x+ (5b− 3c)

so comparing coe�cients,

−3a = 3

10a− 3b = −4

5b− 3c = 2

which can be easily solved to give

a = −1

b = −2

c = −4

Thus

yp = −
(
x2 + 2x+ 4

)
is a particular solution, and the general solution is

y = Ae
3x
5 −

(
x2 + 2x+ 4

)

This approach is easily extended to any polynomial - we just come up with a trial solution (sometimes

called an ansatz, basically just an educated guess) which is a polynomial of the same order as the

forcing term, and solve to �nd the right coe�cients.

3.3.3 Eigenfunction forcing

One other type of problem we commonly get involved a forcing term which is actually an eigenfunction

of the di�erential operator. We shall investigate this via a practical example, taking the opportunity

to demonstrate the process of converting a physical problem into a di�erential equation.

Example 3.9. In a radioactive rock, isotope A decays into isotope B at a rate proportional to the

number a of remaining nuclei of A, and B decays into C at a rate proportional to the corresponding

variable b. Determine b (t).
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We have two time-varying variables, a and b. We know exactly how a varies over time, since we

can write its evolution via a simple homogeneous di�erential equation whose solution we know, by

introducing a positive decay constant ka controlling how fast the A→ B reaction occurs:

da

dt
= −kaa

a = a0e
−kat

where we have written a (0) = a0.

The equation for the evolution of b is more complicated, because it explicitly depends on the

evolution of a - introducing a new decay constant kb, we obviously have a −kbb term in b′, but we

also have b increasing at the same rate as a decreases. Hence:

db

dt
= kaa− kbb

db

dt
+ kb = kaa0e

−kat

Now we know that the forcing term is an eigenfunction of the di�erential operator on the left

hand side, and so we can try to �nd a particular integral which is a multiple of this function, with

a coe�cient determined by the eigenvalue. That is, we guess

bp = De−kat

Then if bp is a solution of the above equation, we can cancel the e−kat terms to be left with

−kaD + kbD = kaa0

D (kb − ka) = kaa0

Now obviously we have a problem if kb− ka = 0, since then this equation has no solution unless

ka or a0 is zero (both of which correspond to trivial cases of the problem).

Assuming kb 6= ka: we can determine b via the complementary function bc = Ee−kbt, with

b (t) = bp + bc

=
ka

kb − ka
a0e
−kat + Ee−kbt

and if b = 0 at t = 0, we have

b (t) =
ka

kb − ka
ao
(
e−kat − e−kbt

)
Note that we can also determine from this the value of b/a over time without knowing a0:

b

a
=

ka
kb − ka

[
1− e(ka−kb)t

]
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However, we can see there are some in which this sort of approach does not work in quite the

expected form - what happens if we have to produce a term which the di�erential operator annihilates?

By this, we mean, for example, trying to solve the above problem with kb = ka - then the bp = De−kat

guess will lead to a 0 = f (t) equation, with the adjustable parameter D disappearing. A simpler

example would be solving an equation where like y′ − y = ex where we know that the forcing term ex

is an eigenfunction of y′ − y with eigenvalue 0.

3.3.4 Resonant forcing

When we come to see second-order di�erential equations, we will see that this sort of forcing leads to

what is called resonance in oscillatory systems - a system which would normally behave like a sine

wave, for example, which is forced at its own frequency can be made to have the size of the oscillations

grow over time. Mathematically, however, the same approaches to solving this problem can be used

for any order of equation.

The main method we will demonstrate involves detuning the original equation, so that it has an

eigenvalue λ very slightly di�erent from zero, and then letting λ→ 0.

Example 3.10 (Detuning). Find the general solution of y′ − y = ex by detuning the equation.

The �rst step here is to substitute the forcing term with e(µ+1)x where we think of µ as being

very small but non-zero. We then want to �nd the particular solution for this term equation, which

we know how to do:

y = De(µ+1)x

y′ − y = [D (µ+ 1)−D] e(µ+1)x

D (µ+ 1)−D = 1

D =
1

µ

Hence

y =
1

µ
e(µ+1)x

=
1

µ
eµx · ex

Now to take the limit as µ→ 0 of this is not possible, since 1
µ →∞ and eµx → 1, so it has no

limit. In terms of the Taylor series in µ,

1

µ
eµx · ex = µ−1

(
1 + µx+

1

2
µ2x2 + · · ·

)
· ex

= µ−1ex + x · ex + o (µ)

But note that when we picked out a particular solution, it was fairly arbitrary that we assumed it

was of the form De(µ+1)x - we can easily add arbitrary multiples of solutions to the complementary
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equation. In particular, it is clear that

1

µ
eµx · ex − 1

µ
ex

is a solution, since ex solves the above equation. Then we have that

y = xex + o (µ)

is always a solution to the above equation, and as this suggests, as µ→ 0 we have a solution xex:

(xex)
′ − xex = (xex + ex)− xex

= ex

as required.

In fact, this is the embodiment of a general principle - say we have any �rst-order equation

ay′ + by = f (x)

for a, b constant, where f (x) is a multiple of yc, a solution of the complementary equation. Then note

that

a (x · yc)′ + bx · yc = ayc + axy′c + bx · yc
= x (ay′c + byc)︸ ︷︷ ︸

0

+ayc

= ayc

Now if this is really a �rst-order equation, a 6= 0, so if we have an equation forced by the eigen-

function yc, then we can �nd a general solution by adding on some multiple of x · yc.

Remark. As noted at the start of this section, section 6.5 on the general method of variation of

parameters gives us a general proof of this.

Example 3.11. Find the general solution of 2y′ + 6y = 3
(
e−3x + e3x

)
.

Note that the complementary function solves 2y′c + 6yc = 0. Hence yc = Ae−3x.

Now for a particular solution, we can guess a solution of the form c · xe−3x + d · e3x because

e−3x solves the complementary equation:

2y′ + 6y = 2ce−3x − 6cxe−3x + 6de3x

+6cxe−3x + 6de3x

= 2ce−3x + 12de3x
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Thus comparing coe�cients, we choose c = 3
2 and d = 1

4 to obtain

y = Ae−3x +
3

2
xe−3x +

1

4
e3x

=

(
A+

3

2
x

)
e−3x +

1

4
e3x

3.4 Non-Constant Coe�cients and Integrating Factors

In this section, we will consider methods for handling �rst-order linear equations with non-constant

coe�cients. The general form of such an equation is

a (x) y′ + b (x) y = c (x)

We put such an equation into standard form by eliminating the coe�cient of y′ - that is, by dividing

through by a (x):

y′ + p (x) y = f (x)

There are a various techniques which can be applied to these problems. A frequently very useful

approach is to reduce it to a problem with constant coe�cients. To do this, we could attempt to de�ne

a new variable z so that we can write this equation in the form z′ = g (x), eliminating the mixed term

p (x) y. This method is called using an integrating factor.

Consider a new variable z (x) = µ (x) y (x). Then

z′ = µy′ + µ′y

= µ (f (x)− p (x) y) + µ′y

= µf (x) + y (µ′ − µp (x))

which is in the required form if and only if

dµ

dx
= µp

But this is a separable equation: we can integrate it as follows:

p =
1

µ

dµ

dxˆ
pdx =

ˆ
1

µ

dµ

dx
dx

=

ˆ
1

µ
dµ

= ln |µ|+ C

Then we have an explicit expression for a suitable µ (noting the arbitrary multiplicative constant
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arising from the additive one in the integral) in the form

µ = Ae
´
p dx

Now we have

z′ = µf

z = µy =

ˆ
µfdx

so we have a solution

y (x) =
1

µ

ˆ
µfdx

where we can take

µ (x) = e
´
pdx

Example 3.12. Solve the equation xy′ + (1− x) y = 1.

The �rst stage in solving these equations is to put them in standard form, which gives

y′ +

(
1

x
− 1

)
y =

1

x

Hence, using an integrating factor

µ = e
´
( 1
x−1)dx

= eln x−x+C

= Axe−x

where for completeness we have included the constant A = eC . (It cancels at the next stage.)

Hence we have

Axe−xy =

ˆ
Axe−x · 1

x
dx

xe−xy =

ˆ
e−xdx

= D − e−x

with �nal solution

y =
1

x
[Dex − 1]

=
D

x
· ex − 1

x

Remark. Solutions where the leading coe�cient a (x) has a zero at some point - as in the above

example, where a (x) = x which is obviously zero at x = 0 - often exhibit singular behaviour at these
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points (something investigated again in 4.6). For example, the above equation has solutions whose

value goes to ±∞ as x→ 0.

In fact, if we demanded a solution that was �nite everywhere, then we would be forced to take

D = 1, as only then do we get

y =
ex − 1

x
→ 1 as x→ 0

3.5 Non-Linear Equations

An even more general class of �rst-order equations allows the coe�cients of dy
dx and y to depend upon

y as well as x.

The general form of such a non-linear equation is

Q (x, y)
dy

dx
+ P (x, y) = 0

where we have no apparent `forcing terms' as P (x, y) can absorb them all (note P is constrained to

be a multiple of y, as we can just multiply by 1
y !).

As we have already seen in deriving the method of integrating factors, one class of equation can be

easily solved:

3.5.1 Separable equations

The equation is separable if it can be rewritten in the form

q (y)
dy

dx
= p (x)

or perhaps more memorably (in di�erential form)

q (y) dy = p (x) dx

If both expressions are integrable, then this can solved by integration of both sides as we saw above:

ˆ
p (x) dx =

ˆ
q (y)

dy

dx
dx

=

ˆ
q (y) dy

although we do not necessarily get an expression for y in terms of x (this depends on whether we can

invert the function which appears upon integrating q).

Example 3.13. Solve

x
dy

dx
+ 1 = y2
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Away from x = 0 we may write

dy

dx
=

y2 − 1

x

and away from y = ±1 we have
1

y2 − 1
· dy

dx
=

1

x

and then we need to perform two integrations:
´

1
xdx and

´
1

y2−1dy.

Note now that we must separately note the two constant solutions, y = 1 and y = −1, which

both satisfy the original equation.

The second integral is usually calculated by the method of partial fractions: we write

1

y2 − 1
=

1

(y + 1) (y − 1)

=
A

y + 1
+

B

y − 1

and it can be found that A = −1/2 and B = 1/2.

So for ranges where y does not pass through ±1, we have

ˆ
1

y2 − 1
dy =

1

2

ˆ [
− 1

y + 1
+

1

y − 1

]
dy

=
1

2
[− ln |y + 1|+ ln |y − 1|]

=
1

2
ln

∣∣∣∣y − 1

y + 1

∣∣∣∣
and so we have

1

2
ln

∣∣∣∣y − 1

y + 1

∣∣∣∣ = ln |x|+ C1

Note that the term in the modulus symbol on the left can only change sign at y = ±1, and similarly

at x = 0 on the right. So in any region where our analysis is valid, this equation is too.

Now in this case it is actually possible to rearrange this into an equation for y:

ln

∣∣∣∣y − 1

y + 1

∣∣∣∣ = 2 ln |x|+ C2

= lnx2 + C2

Then we have ∣∣∣∣y − 1

y + 1

∣∣∣∣ = |C3|x2

Now we can also drop the other modulus signs by allowing C3 to have arbitrary sign:

y − 1

y + 1
= ± |C3|x2

= C3x
2
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x

y

Figure 3.1: Solutions to Example 3.13 for D = −1,−0.9,−0.8, · · · , 0.9, 1 plus the constant solution
y = −1

which can be solved to get

y =
1 + C3x

2

1− C3x2

So to summarize, there are two constant solutions, y = ±1. For y in (−∞,−1), or (−1, 1), or

(1,∞), there are solutions of the form

y =
1 +Dx2

1−Dx2
=

2

1−Dx2
− 1

which may be joined continuously to any other part-solution at y = ±1 to form a correct global

solution. (Similarly, at the singularity `y = ±∞' which occurs for x = D−1/2 when D > 0, one

can attach any other solution, and the result will also be a correct solution everywhere except at

the singularity.) The two constant solutions along with a selection of other curves for positive and

negative D are shown in Figure 3.1.

As in the previous section where we noted singular behaviour when the coe�cient of y′ was 0, we

see here that at x = 0 the equation reduces to 1 = y2, and hence it is no longer a �rst-order equation.

This behaviour results in an extra degree of freedom in the solution, corresponding to which solutions

we `glue' on at x = 0 (which corresponds to y = 1). (As mentioned before, some di�erent types of

singularity will be discussed in section 4.6.)
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Note that because the original equation was invariant under the transformation x → −x, for any
solution y (x), the re�ection y (−x) is also a solution. Similarly, because x only appeared in a so-called

equidimensional term x · dy/dx which is invariant under x→ ax for any a 6= 0, for any solution y (x),

the horizontal rescaling y (ax) is also a solution if a 6= 0.

Note also the asymptotic behaviour as x → ±∞ - apart from the unstable solution y = 1, which

other solutions tend away from as |x| grows, all solutions will converge in this limit to y = −1, a stable

solution. We will consider this type of behaviour in section 3.6.

3.5.2 Exact equations

There is another wide class of �rst-order non-linear equations which can be solved reasonably straight-

forwardly. The equation

Q (x, y)
dy

dx
+ P (x, y) = 0

is said to be an exact equation if and only if the di�erential form

Q (x, y) dy + P (x, y) dx

is an exact di�erential df of some function f (x, y).

If so, then the di�erential equation implies that df = 0, so f = C is constant, which gives us an

implicit relationship between x and y - that is, the solution.

Formally, we want to know that given any path (x (t) , y (t)) in the xy-plane which satis�es the

equation, then the function f (x (t) , y (t)) is constant along that path. Hence, by the chain rule,

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= 0

so we want to identify

P =
∂f

∂x

Q =
∂f

∂y

Now if this is true, then assuming that f is su�ciently nice that the order of second partial

derivatives is irrelevant5, we would have

∂P

∂y
=

∂2f

∂y∂x

∂Q

∂x
=

∂2f

∂x∂y

and hence
∂P

∂y
=
∂Q

∂x

5Recall Theorem 2.3 - if f has all second derivatives being continuous, then this holds.
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making this a necessary condition for Pdx+Qdy to be an exact di�erential of such a function f .

We will state the converse without proof here:

Theorem 3.14. If ∂P∂y = ∂Q
∂x throughout a simply connected domain D then Pdx+Qdy is an exact

di�erential of a single-valued function in D.

Remark. A simply connected domain is a space like the Euclidean plane, or a disc embedded in it, in

which any two points have a path passing between them (it is path-connected) and such that any two

di�erent paths can be continuously deformed into each other. (So for example, a disc with a hole in

the middle is not simply connected, because two paths passing on either side of the hole cannot be

morphed into each other.)

If the equation is exact, then the solution f = constant can be found by integrating both expressions

P =
∂f

∂x

Q =
∂f

∂y

as we demonstrate here:

Example 3.15. Solve the equation

cos (xy)

[
y + x

dy

dx

]
+ 2

[
x− y dy

dx

]
= 0

We can rewrite this as

(x cos (xy)− 2y)
dy

dx
+ (y cos (xy) + 2x) = 0

and hence

(x cos (xy)− 2y)︸ ︷︷ ︸
Q

dy + (y cos (xy) + 2x)︸ ︷︷ ︸
P

dx = 0

Then we can see

∂P

∂y
= cos (xy)− xy sin (xy)

∂Q

∂x
= cos (xy)− xy sin (xy)

so this is an exact equation.

Hence

∂f

∂x
= y cos (xy) + 2x

f = sin (xy) + x2 + C (y)
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where the `constant' term C1 is only constant with respect to x, but may vary with respect to y.

Now taking the derivative of this with respect to y we obtain

∂f

∂y
= x cos (xy) + C ′ (y)

but since we already know that ∂f
∂y = Q we have

x cos (xy) + C ′ (y) = x cos (xy)− 2y

C ′ (y) = −2y

C (y) = −y2 +D

and hence

f = sin (xy) + x2 − y2 +D

Thus the �nal solution is given by constant f ; that is,

sin (xy) + x2 − y2 = constant

As we can see from the analytical solution, for large |x| or |y| the sin (xy) term becomes less

dominant, and the solutions tend towards the hyperbolae x2−y2 = const. Similarly, for small |x| and
|y| the solution (working to �rst order in x and y independently) is roughly xy+x2−y2 = constant

which are another set of hyperbolae at a di�erent angle. All of this behaviour can be seen veri�ed

by visualizing the solutions.

A contour plot of f in the vicinity of the origin is displayed in Figure 3.2. Note that what we

have shown is that the solution trajectories are constrained to move along these contours, since

df/dt = 0 along any acceptable path given by varying x and y. It does not necessarily follow,

however, that any contour will give a globally valid solution to the original equation.

This is because we require it to be possible to parametrize the contour as y (x), not just as

(x (t) , y (t)), so contours which `double back' on themselves only satisfy the equation up until the

point they reverse direction - at this point dy/dx → ±∞ so we can expect to �nd singularities in

the original di�erential equation. Indeed, the coe�cient of dy/dx is (x cos (xy)− 2y) which is 0 at

precisely the points where the solutions fail.

Note also that the equation is singular at the origin, as it must be since two contours cross

there! This is the same situation as we had previously, where either path leaving the origin is valid.

However, the equation is non-singular along the entire path if (x cos (xy)− 2y) 6= 0 anywhere

along it, a condition obeyed if |2y| > |x|, and in particular for any negative constant, as you may

like to verify.
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Figure 3.2: A few solutions to Example 3.15 near the origin, for various values of the constant.

3.6 Analysis of General First-Order Equations

In the previous section, we observed interesting behaviour of the analytical solutions to non-linear

equations. It is natural to ask whether there are any general techniques for analyzing equations

without solving them. Obviously one answer is that we use a computer to solve them numerically,

using techniques like those demonstrated in section 3.2.1, where we turned the equation into a step-

by-step process. However, this has two key problems:

• We can only numerically integrate one speci�c instance of a problem at a time - there may

be complicated behaviours we don't observe because we don't try the correct parameters. The

extreme case of this is in a chaotic system, where tiny changes in initial input result in massive

changes in the behaviour over fairly short periods.

• It may not be possible to numerically integrate the equation accurately enough to examine its

behaviour except over very short periods as the system has singular behaviour at some points.

This means that it is very useful to develop tools for analyzing an analytical problem in as much detail

as possible before resorting to numerical approaches.

We will consider the general case of an equation of the form

dy

dt
= f (y, t)

Let us begin with a simple example of an equation that we can solve analytically.

3.6.1 Worked example of solution sketching
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Example 3.16. Analyze the behaviour of solutions in case

f = t
(
1− y2

)
or ẏ = t

(
1− y2

)
.

This equation is separable:

ˆ
dy

1− y2
=

ˆ
tdt

1

2
ln

∣∣∣∣1 + y

1− y

∣∣∣∣ =
t2

2
+ C

1 + y

1− y
= Aet

2

y =
Aet

2 − 1

Aet2 + 1

This gives us a parametrized family of solutions depending on the variable A. We can rewrite

this as

y = 1− 2

1 +Aet2

and hence sketch it for say A = 1 - we consider t > 0 (treating this as a problem of evolution in

time from initial conditions - we call the solution curve a trajectory when we look at it this way):
1

Figure 3.3: Solution curve for Example 3.16 for the case A = 1

So can we understand this equation without solving it?

(i) A natural �rst step is to �nd where ẏ = f = 0. In this case, this occurs at t = 0 and y = ±1.

From this it follows that y = 1 and y = −1 are both solutions.

Also, if we focus on t > 0, then we can actually note further that ẏ < 0 for y > 1 and y < −1,

and ẏ > 0 for y ∈ (−1, 1).

(ii) Another very useful idea for sketching solutions and seeing how they behave is to consider

how the gradient �eld varies in space. One way to do this is to consider the isoclines, which

are the lines along which f is constant (i.e. the contours of f).

In this case, we have

t
(
1− y2

)
= C
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and hence either t = 0, giving the y-axis, or

y2 = 1− C

t

We can separate this into the two cases C > 0 and C < 0, or increasing and decreasing y -

note that C = 0 gives the isoclines y = ±1 along which the gradient is 0.

(a) If C > 0, then y2 → 1 from below as t grows, starting where y2 = 1 − C/t = 0; i.e. at

t = C. These lines form long `c' shapes in between the two lines y = ±1.

(b) If C < 0, then y2 descends from arbitrarily high near t = 0 to 1 as t grows.

These lines are all sketched with arrows indicating the direction of the gradient (given by C)

at that point to give a diagram like those shown in Figure 3.4a.

(iii) From the above, we can deduce that y = 1 is a stable solution, and y = −1 is an unstable

solution, by seeing that the arrows around these two lines point towards and away from them

respectively.

(iv) To sketch solution curves, we can simply join up the arrows we have drawn, and a selection

of solutions is shown in Figure 3.4b.

-1

1

(a) Isoclines with marked gradients

-1

1

(b) Solution curves and their intersections with
the isoclines

Figure 3.4: Isoclines and solutions (�ow lines) for Example 3.16.

Note that if the function f (y, t) giving the gradient is single-valued, solution curves cannot cross. This

is because a single point on the curve is therefore su�cient to calculate dy/dt at that point, and the

whole solution can then be deduced by integrating away from this point.
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3.6.2 Stability of equilibrium points

A natural question to ask about a solution, in light of the points made in introducing this section, is

whether or not a small change in the value of the variables at some point decays over time, becoming

insigni�cant, or grows to make the two solutions diverge signi�cantly.

This is the idea of stability we have already seen in previous sections.

We will concern ourselves with �xed or equilibrium points here (although it is perfectly valid in

general to talk about the stability of a more complicated solution), which are points where

dy

dt
= f (y, t) = 0 for all t

as in y = ±1 in our example above. Recall that y = 1 was stable, and y = −1 was unstable.

Perturbation analysis Imagine that we have located some �xed point y = a, so that f (a, t) ≡ 0.

Then we are concerned with the behaviour of the deviation from a over time. Therefore, we will

consider an initially nearby solution y (t) = a+ ε (t), where we assume ε (t) is small. Then

dy

dt
= f (a+ ε (t) , t)

= f (a, t) + ε
∂f

∂y
(a, t) +O

(
ε2
)

= ε
∂f

∂y
(a, t) +O

(
ε2
)

This actually gives us an approximate di�erential equation for ε, so long as ∂f
∂y (a, t) is non-zero

(see remark below), because clearly dy/dt = dε/dt as a is a constant:

dε

dt
u
∂f

∂y
(a, t) · ε

Note that this is equation is linear, because the coe�cient of ε is only a function of t (because we

evaluate the partial derivative at y = a).

Example 3.17. Returning to the case f = t
(
1− y2

)
we have

∂f

∂y
= −2yt

=

−2t at y = 1

2t at y = −1

and hence:

• near y = 1,

ε̇ = −2tε

ε = ε0e
−t2 → 0 for any ε0 as t→∞
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and hence a su�ciently small perturbation ε (small enough that the linearization approxima-

tion is valid) will always decay to 0. We conclude that the �xed point y = 1 is stable.

• near y = −1,

ε̇ = 2tε

ε = ε0e
t2 → ±∞ for any ε0 6= 0 as t→∞

so the perturbation ε grows as time passes, and the �xed point y = −1 is unstable. Note

that when we say `ε→ ±∞' we only mean that initially ε grows; in fact, once it is su�ciently

large higher-order terms may dominate the expression for ε̇, as happens when a small positive

displacement is made from y = −1. (We know that then y → 1, the stable solution.)

Remark. As mentioned above, in the case that ∂f∂y (a, t) = 0, the approximation for ε̇ is not valid, and we

need to take higher order terms in the Taylor expansion for f . Consider, for example, the unpleasant-

looking equation ẏ = cos y − 1. This can in fact be solved analytically to give y = 2 cot−1 (t+ C); in

terms of y (0) = y0, C = cot (y0/2).

In this case, ∂f/∂y = − sin y is identically 0 at the obvious equilibrium solution y = 0. Hence

taking an extra term in the Taylor expansion, we have the `approximation'

ε̇ u
1

2

∂2f

∂y2
(0, t) · ε2

=
1

2
· (− cos 0) · ε2

= −1

2
ε2

which can be exactly solved for ε, though this is not in fact necessary: simply note that for any ε > 0,

ε̇ < 0, and it is clear therefore that ε → 0, since ε̇ = 0 at ε = 0. Hence positive perturbations decay

over time. But by contrast, if ε < 0 then we also have ε̇ < 0, so negative perturbations grow over time.

As a result, the point is what is sometimes termed semi-stable.

This demonstrates a typical application of the theory. A particular special case arises for au-

tonomous systems.

De�nition 3.18. An autonomous system is one in which ẏ = f (y) is independent of t.

Autonomous systems In this case, near a �xed point y = a,

y (t) = a+ ε (t)

ε̇ u
[

df

dy
(a)

]
ε

= ke
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for some constant k as long as k 6= 0 (see the remark above). We know this has solution

ε = ε0e
kt

and hence the �xed point y = a is stable or unstable according to whether k = dy
dt (a) is negative or

positive.

Example 3.19. One physical instance of stability problems like this occurs in considering chemical

reactions.

For instance, consider the neutralization reaction in which sodium hydroxide (NaOH) and hy-

drochloric acid (HCl) in water react to form a new water molecule and the salt sodium chloride

(NaCl).

NaOH + HCl
H2O−→ H2O + NaCl

number of molecules a b c c

initial number of molecules a0 b0 0 0
If the reactants are in dilute solution in water, then the rate of reaction is proportional to the

product of the numbers of reactants, ab. Hence

dc

dt
= λab

= λ (a0 − c) (b0 − c)

= f (c)

Because this system is autonomous, as f = f (c), we can simplify the plot greatly. In fact, we

need only consider the plot of f = dc/dt against c. Without loss of generality, assume a0 < b0:

a0 b0

Figure 3.5: Plot of c against f (c) for Example 3.19, in the case a0 < b0

Noting that points where the curve is above the c-axis correspond to increasing c (t), and

similarly points below to decreasing c (t), we can form the so-called phase portrait :

a0 b0
c

Figure 3.6: Phase portrait for f (c) in Example 3.19

The arrows either side of a0 point towards it, and the arrows either side of b0 point away from

it. Hence a0 is stable, and b0 is unstable.

In fact, in this chemical problem, it is clear that it is not a physical solution to have negative

a or b and hence only the left-most portion of the diagram is relevant, showing that the system
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tends (beginning at any point corresponding to a possible stage in the reaction) towards the stable

equilibrium at c = a0 - that is, the reaction gradually slows to zero as all of chemical a is used up,

as we would expect.

Remark. The phase portrait for a semi-stable point x0 would look something like the following:

x0
x

Figure 3.7: Example of a phase portrait for a semi-stable point

Exercise 3.20. Solve the above equation explicitly for c (t).

3.6.3 The logistic equation

The �nal example of a �rst-order equation that we will consider is extremely well-known because of

its interesting behaviour. It was originally presented as a simple model of population dynamics.

First, imagine a population of size y, where we assume y is large enough that taking it to be varying

continuously in time is a suitable approximation. Suppose it is controlled by two parameters,

• a constant birth rate, so that y increases at a rate αy; and

• a constant death rate, so that y decreases at a rate βy.

Then obviously we have

dy

dt
= αy − βy = (α− β) y

y = y0e
(α−β)t

so either y grows or decreases exponentially (or remains constant) depending only on whether α > β

or α < β (or α = β).

The problem here is that the death rate, for most realistic populations, is clearly going to be a�ected

by the size of the population, due to e�ects like competition for limited resources.

So now imagine a population controlled by a birth rate and natural death rate proportional to y

as before, but with the additional e�ect that individuals are competing for food. The probability that

some source of food is found is proportional to y, and the probability of the same source of food being

found by two individuals is proportional to y2. If we assume that two individuals �nding the same

source of food �ght to the death over it, then an extra term in the death rate appears, proportional

to y2:
dy

dt
= (α− β) y − γy2

We conventionally rewrite this in terms of two new variables r = α− β and K = r
γ as follows:

ẏ = ry
(

1− y

K

)
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Here, r de�nes the growth rate of the population (the rate at which the population would grow in

the absence of competition, assumed to be positive here, so that the species does not simply go extinct

even in perfect conditions), and K is the carrying capacity : the maximum number of individuals that

can be sustained inde�nitely by the environment. Note that ẏ changes sign at y = K, and indeed that

y = K is an equilibrium point.

This is called the (di�erential) logistic equation.

We can rewrite the equation in terms of the variable x = y/K, the ratio of the population to the

carrying capacity, eliminating this parameter entirely:

ẋ =
1

K
ẏ

=
ry

K

(
1− y

K

)
= rx (1− x)

We will analyze the equation in the scale-invariant form

ẋ = rx (1− x)

writing

ẋ = f (x)

In fact, we can easily form the phase portrait for these equations:

0 Y
y

0 1
x

Figure 3.8: Phase portraits for the logistic equation

The logistic map It might be fruitful to think about changes of population of happening over

discrete time; crudely speaking, for example, thinking of the births happening in spring, and the

deaths in the winter.

So let us attempt to consider the analogous discrete-time version of the logistic equation by writing

x→ zn and ẋ→ (zn+1 − zn) /∆t, where ∆t time passes between zn and zn+1.

This approximation of the time-derivative gives us the equation

zn+1 − zn
∆t

= rzn (1− zn)

zn+1 = zn + ∆t · rzn (1− zn)

= (1 + r∆t) zn − r∆t · z2
n

= (1 + r∆t) zn

[
1−

(
r∆t

1 + r∆t

)
zn

]
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Now write λ = 1 + r∆t and let

xn =

(
r∆t

1 + r∆t

)
zn

so we have

xn+1 = λxn (1− xn)

In this equation, xn acts like the population, and λ like a time-adjusted version of r. We call this

equation the logistic map.

We similarly write

xn+1 = f (xn)

where f (x) = λx (1− x) is in essentially the same form as for the continuous equation (we have

merely transformed r → λ) - note that it is not obvious that this relationship should hold: in the form

ẏ = f (y), f (y) expresses a rate of change, whereas here, it gives the next value in the sequence.

Remark. We are taking λ > 0 here as well.

Behaviour of the logistic map It is possible to analyze the behaviour over time of a discrete

�rst-order map like this by making so-called cobweb diagrams.

We begin by drawing a graph of xn against xn+1, in this case the parabola f , and then we can

trace the route (or orbit) a point x0 takes over time as follows:

(i) Find the point corresponding to x0 on the xn-axis.

(ii) Draw a line vertically until it intersects with the curve f .

(iii) Draw a line horizontally until it intersects with the line xn+1 = xn.

(iv) Repeat steps 2 and 3 from the new point.

The idea is that the vertical line gives the point needed on the xn+1 axis, and we can then �nd the

corresponding point on the horizontal xn axis by using the line xn+1 = xn.

For λ < 1, we have a graph like that shown in Figure 3.9a, for x0 > 0.5.

The diagram indicates that x = 0 is a stable �xed point. We can take this opportunity to �nd all

�xed points for arbitrary λ. We require xn+1 = f (xn) = xn, so we want to solve

λx (1− x) = x

x (λ (1− x)− 1) = 0

x ((λ− 1)− λx) = 0

which has solutions

x = 0,
λ− 1

λ

= 0, 1− 1

λ

Note that for λ < 1 the second equilibrium point lies out side the interval [0, 1] under consideration,

but for λ > 1 it lies inside it. It appears in Figure 3.10.
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x0x1 1
xn

1

xn+1

(a) 0 < λ < 1: Full diagram

x0x1

xn

xn+1

(b) 0 < λ < 1: Closer version with smaller x0

Figure 3.9: Cobweb diagrams for the logistic map with λ < 1

Here, it appears that 0 is an unstable �xed point, whilst the new �xed point (at the intersection of

f (xn) = xn) appears stable.

Before we continue with the cases of λ > 2, let us brie�y consider the stability of �xed points in

the general case of any �rst-order recurrence relation.

Stability of �xed points Suppose xn = X is a �xed point of the map xn+1 = f (xn). As before,

consider a small perturbation ε, so xn = X + εn.

Then using a Taylor expansion of f we �nd that

X + εn+1 = f (X + εn)

= f (X) + εnf
′ (X) +O

(
ε2n
)

εn+1 u εnf
′ (X)

since X = f (X) by hypothesis, again with the assumption that f ′ (X) 6= 0.

Now X is stable if a small deviation gets smaller over time; that is, the magnitude of adjacent

errors falls. ∣∣∣∣εn+1

εn

∣∣∣∣ < 1

which is equivalent (given a non-constant �rst-order approximation to f) to

|f ′ (X)| < 1

Similarly, if |εn+1/εn| = |f ′ (X)| > 1 then the point is unstable.

Note that this is valid for any �rst-order relation so long as f can be approximated by a Taylor

expansion of �rst-order, and f ′ (X) 6= 0.

We can also deduce information from the sign of εn+1/εn. A positive ratio means that we expect
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x0x1 1
xn

1

xn+1

Figure 3.10: Cobweb diagram for the logistic map with 1 < λ < 2

the sequence xn to tend directly to any stable �xed point, since consecutive displacements have the

same sign. Similarly, we expect oscillatory behaviour near any stable �xed point for the negative ratio,

since a negative perturbation becomes positive and vice versa. (Indeed, where the �xed points are

unstable, we can also expect local behaviour of the same kind.)

Remark. The f ′ (X) = 0 case can be dealt with as before, by considering the ratios obtained from

higher-order terms in the Taylor series. If |f ′ (X)| = 1 then the problem is more complicated. To

�rst-order in εn, the ratio is given by

εn+1

εn
u f ′ (X) +

1

2
εnf
′′ (X)

so there are di�erent cases according to the signs of f ′ and f ′′ at this point. (We consider only the

f ′′ (X) 6= 0 cases here.) If both are positive, then for positive displacements the ratio is slightly greater

than 1, and for negative displacements it is between 0 and 1 for su�ciently small εn, so the point is

semi-stable6. Similarly, if f ′ (X) > 0 and f ′′ (X) < 0 then the point is semi-stable.

If f ′ (X) < 0 then εn+1 = −εn + µε2n for µ sharing the sign of f ′′ (X) - we assume µ > 0 without

loss of generality. The sequence εn obviously alternates in sign (for small εn) and hence if εn > 0 then

|εn| − |εn+1| = µε2n. Then εn+2 > 0 and |εn+2| − |εn+1| = µε2n+1. So |εn+2| − |εn| = µ
(
ε2n+1 − ε2n

)
< 0

as |εn+1| < |εn|. We have |εn+1| < |εn+2| < |εn|. It is clear that if εj > 0 then |ε2m+j | is a strictly

decreasing sequence bounded below by zero, so |ε2m+j | → l for some l; in fact, because ε2m+j shares

6We have εn+1/εn = 1 + µεn so for negative displacements, εn < εn+1 < 0 and hence εn is a strictly increasing
sequence bounded above, and therefore converges (a property of the real numbers; see Numbers & Sets or Analysis I) to
some value l. Then taking limits in εn+1 = εn +µε2n we have l = l+µl2 so µl2 = 0 and hence εn → l = 0 as we assumed
µ 6= 0.
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the same sign as εj , ε2m+j → l > 0. Then evidently

ε2m+j+1 = −ε2m+j + µε22m+j → −l + µl2

But we know that the limit of ε2(m+1)+j is l, so

ε2(m+1)+j = −ε2m+j+1 + µε22m+j+1

→ l − µl2 + µ
(
l − µl2

)2
= l

and hence

−µl2 + µl2 (1− µl)2
= 0

µl2
(
−1 + (1− µl)2

)
= 0

so either l = 0 or 1 − µl = ±1 so l = (1± 1) /µ. Hence l = 0, 2/µ. But for |ε0| < 2/µ this cannot be

obtained as the sequence |εn| is strictly decreasing. Hence l = 0, and the point is stable (though we

expect convergence to be slow).

For the case of the logistic map, we have a smooth function, the polynomial

f = λx (1− x)

with derivative

f ′ = λ− 2λx

so:

• x = 0 is stable if |λ| < 1 and unstable if |λ| > 1.

• x = 1 − 1
λ is stable if |λ− 2λ+ 2| = |2− λ| < 1. This is equivalent to 1 < λ < 3. Similarly, for

λ < 1 and λ > 3 this is unstable.

Note also that the ratio εn+1

εn
u f ′ (x) = 2− λ which is positive for λ < 2 and negative for λ > 2. We

have seen that xn tends directly to the stable �xed point for λ < 2, as predicted above.

The oscillatory convergence can be seen for the case 2 < λ < 3 in Figure 3.11.

Remark. For λ = 3, our analysis above for the case f ′ (X) = −1 indicates that there is a stable �xed

point, since f ′′ (X) = −2λ < 0.

Bifurcation The behaviour for λ > 3 gets rapidly more complicated, as there are no stable attracting

points. It is important to realize that the maximum value obtained by xn is at

d

dx
λx (1− x) = λ− 2λx = 0

x =
1

2
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x0 x1

xn

xn+1

(a) Global behaviour

xn

xn+1

(b) Detailed view of the local behaviour

Figure 3.11: Cobweb diagrams for the logistic map with 2 < λ < 3

where it has value λ/4. Hence to keep the sequence xn in [0, 1] we can have any λ ∈ [0, 4]. Hence for

a λ ∈ [3, 4] we have bounded behaviour without any stable �xed points.

The �rst interesting change is exhibited immediately after λ exceeds 3. The behaviour which can

be seen is that the orbit on the cobweb diagram expands from the now unstable �xed point to become

the limit cycle shown in Figure 3.12.

This is a cycle of period 2, so we are interested in the behaviour of f2 (x) = f (f (x)). Speci�cally,

we want the �xed points of this map, as we are seeking cycles with xn+2 = xn.

f2 (x) = x

λf (x) [1− f (x)] = x

λ2x (1− x) [1− λx (1− x)] = x

x
[
λ2
(
1− x (1 + λ) + 2λx2 − λx3

)
− 1
]

= 0

−λ3x

[
x−

(
1− 1

λ

)][
x2 −

(
1 +

1

λ

)
+

1

λ

(
1 +

1

λ

)]
= 0

So the �xed points of order 2 are x = 0 and 1− 1
λ (because a �xed point of �rst order is trivially also

a �xed point of second order, so we know this has to be a factor) and the roots of the �nal quadratic.

These are given by

x =
1 + 1

λ ±
√(

1 + 1
λ

)2 − 4
λ

(
1 + 1

λ

)
2

=
1 + 1

λ ±
√

1
λ2 (λ2 − 2λ− 3)

2

=
λ+ 1±

√
(λ− 3) (λ+ 1)

2λ
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x0 x1

xn

xn+1

Figure 3.12: Cobweb diagram for the logistic map with 3 < λ < 1 +
√

6

It can be seen that these are real for λ ≥ 3, and distinct from the single �xed point for λ > 3.

Let x0 = 1− 1
λ be the unstable �xed point. Note also that

d

dx
f (f (x)) = f ′ (x) f ′ (f (x))

so the rate of change of f2 at x0 is given by

f ′ (x0) f ′ (f (x0)) = [f ′ (x0)]
2

which as already noted is greater than 1 for all λ > 3. Similarly,[
d2

dx2
f (f (x))

]
x=x0

= f ′ (x0) (1 + f ′ (x0)) f ′′ (x0)

< 0

as f ′′ (x0) < 0 because the gradient is falling (down past −1), and f ′ (x0) < −1.

Therefore, locally around x0, for λ slightly larger than 3, we expect the graph of xn+2 = f2 (xn) to

cross the line xn+2 = xn steeply (and hence `unstably') at x0, but to dip back down again afterwards

and dip up before, forming two complementary stable points of f2, corresponding to the two points in

the period 2 cycle. In fact, since f ′′ (x) < 0 is negative for all x, and f ′ (x) falls rapidly, this holds for

any λ > 3.

The cases where the stable points have direct and oscillatory convergence correspond, as before, to

the sign of d
(
f2
)
/dx at the two �xed points (i.e. the slope of the curve at the point of intersection),
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and examples of the behaviour of x2n are shown in 3.13.

x0 x2

xn

xn+2

(a) Direct convergence of x2n to the lower second
order �xed point

x0x2

xn

xn+2

(b) Oscillatory convergence of x2n to the lower
second order �xed point

Figure 3.13: Cobweb diagrams for the logistic map with 3 < λ < 1 +
√

6

As one might expect, when the �xed points of f2 themselves become unstable, the increased slope

of the graph of f4 at the old �xed points leads to the creation of two new nearby �xed points (which

happens at 1 +
√

6) in much the same way, which also move apart and eventually becomes unstable,

and so on. This process of period-doubling or bifurcation continues, with the splits coming more and

more rapidly.

One way of visualizing this process is to try to plot �xed points against λ. It rapidly becomes

problematic to solve the polynomials of increasing order, so we usually do this fairly stochastically.

The technique often used is to pick, for each λ of interest, some starting point x0, calculate and

dispose of the �rst few iterations (say 100) and then plot its position thereafter, for say another 100

iterations. The idea is that the initial iterations allow the sequence to converge to one of its �xed

points or cycles, and then we plot its progress through the cycle in which it is found. The result for

λ ∈ [0, 3.57] is shown in Figure 3.14.

The region λ ∈ [3.4, 4] is shown in higher resolution in Figure 3.15.

Period doubling occurs at the points λi given for i = 1, · · · , 8 by

(λi) =



3

3.449490 . . .

3.544090 . . .

3.564407 . . .

3.568759 . . .

3.569692 . . .

3.569891 . . .

3.569934 . . .
...
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Figure 3.14: Bifurcation diagram for λ < 3.57

It appears that these values are converging rapidly to some accumulation point λ∞ = 3.56994567 . . .

as can be veri�ed by taking more terms. In fact, when the mathematician Feigenbaum observed this

sequence, he guessed that it was approximately geometric, in the sense that the defect

λ∞ − λn ≈ cδ−n

for some constants c and δ.

Indeed, the ratio

δ = lim
n→∞

λn − λn−1

λn+1 − λn
exists, and has the value

δ = 4.669201 . . .

and it is known as Feignbaum's (�rst or delta) constant. (c has a value of 2.637 . . .)

Let x? be the location of the maximum of f , which for the logistic map is x? = 0.5. For any n, �nd

the λ such that x? is in the 2n-cycle. Now let dn be the (signed) distance to x? of the closest other

point in the 2n cycle - this is the distance between the two tines in this fork. Then the Feigenbaum

reduction parameter

α = lim
n→∞

dn
dn+1

also exists, with the value

α = −2.502907 . . .
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Amazingly, Feignbaum's constants δ and α are common to any period-doubling process arising in

a one-dimensional system which has a single locally quadratic maximum. One may think of the δ

constant as representing a universal scaling property in the λ-direction, and α in the x-direction. This

shows that system is in fact approximately self-similar in the realm of period-doubling.

The region of period doubling forms only a small part of the diagram shown in Figure 3.15. A

so-called saddle-node bifurcation, arising from a di�erent shape in the graph of f3 to what we studied

for period-doubling bifurcations for f2, occurs at 1 +
√

8 u 3.828. This leads to a period 3 orbit at

this point.

However, the behaviour is actually more complicated than simply increasingly complicated periodic

structures - the orbit of the test point appears to �ll out the entire interval. This is the onset of chaos,

though it is highly structured, as the interested reader may �nd. (Of particular interest are the windows

which open with stable oscillatory behaviour of period 3 or 7 etc. as a consequence of mode locking -

it can be seen that these experience period doubling as well, before returning once more to chaos.)

Figure 3.15: Bifurcation diagram for λ ∈ [3.4, 4]

3.7 * Existence and Uniqueness of Solutions

We will not go into any real detail in this course on the various results on existence and uniqueness of

solutions to general di�erential equations. We will just state two key results key result and move on:

Theorem 3.21 (Peano existence theorem). Consider an initial value problem

y′ (t) = f (t, y (t)) , y (t0) = y0, t ∈ [t0 − ε, t0 + ε]
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Suppose f is Lipschitz continuous in y and continuous in t. Then for some ε > 0 there exists a

solution y (t) to the problem within the range t ∈ [t0 − ε, t0 + ε].

De�nition 3.22. A Lipschitz continuous function g (x) on the real numbers is just a continuous

function with the property that it `never changes too fast' - so there is a K such that for any x

and y,

|g (y)− g (x)| ≤ K |y − x|

Remark. For example, if f (t, y (t)) is di�erentiable in y, then we are asking that |∂f/∂y| ≤ K at all

points.

Theorem 3.23 (Picard-Lindelöf). If f is also Lipschitz continuous in y, then this solution is unique.

You can check this result against the examples in section 3.5 - the ones which have a non-unique

solution in any interval around an initial value do not satisfy these conditions. For a simple example:

Example 3.24. Solve y′ = |y|1/2 (de�ned, say, on the interval [0, 1]), given that y (0) = 0.

This is continuous in y and t, but we can easily come up with two totally di�erent solutions:

y = 0 and y = x2/4. In fact, we can change to a function of the form (x− C)
2
/4 wherever we like!

Indeed, note that
∂

∂y
|y|1/2 =

1

2
|y|−1/2 →∞

as y → 0, so this is not Lipschitz continuous near 0.
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4 Second-Order Equations

In this section, we will move on to consider second-order systems, generalizing techniques where pos-

sible, and introducing new ones where appropriate. As before, we begin with a consideration of the

simpler case of constant coe�cients.

4.1 Constant Coe�cients

The general form of such an equation is

ay′′ + by′ + cy = f (x)

with a, b, c constants.

To solve this, we follow the same basic two-stage procedure as before:

(i) Find complementary functions satisfying the homogeneous (unforced) version of the equation,

ay′′ + by′ + cy = 0.

(ii) Find a particular integral satisfying the forced equation.

Remark. As before, this has strong analogies to what we technically think of as a�ne vector spaces,

where there is some space of functions spanned by the eigenfunctions y1 and y2 found to be comple-

mentary functions so long as we move the origin to somewhere else, using the particular integral yp.

The ideas of vector spaces will recur in this section. Also, in section 4.3 we will use a geometrical

description of a di�erential equation embedded in a vector space.

4.1.1 The complementary function

Recall that eλx is an eigenfunction of d/dx, and consequently also of the repeated operator

d2

dx2
≡ d

dx

(
d

dx

)
though with a di�erent eigenvalue, λ2.

As a result, the complementary functions are of the form yc = eλx, and hence y′c = λyc, y
′′
c = λ2yc

and so

aλ2 + bλ+ c = 0

is the characteristic equation for the eigenvalue λ. This has two solutions λ1 and λ2 which may be

equal.

So we have two solutions to the di�erential equation, namely

y1 = eλ1x and y2 = eλ2x

Of course, in the case λ1 = λ2, these are the same function, and we only have one degree of freedom

in our attempted solution of Ay1 + By2 - clearly, we are missing something. Otherwise, though, we
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have the following result, which we will not prove:

Theorem 4.1. If the eigenvalues λ1 and λ2 are distinct, then y1 and y2 are linearly independent

and complete - that is, they form a basis of the space of solutions of the homogeneous equation.

Remark. Again note that this is expressed in the language of vector spaces. All of these results are

straightforwardly generalized to equations of higher order in the natural way.

The most general complementary function in the case of distinct roots is therefore

yc = Aeλ1x +Beλ2x

Example 4.2. Solve 2y′′ + 3y′ + 1 = 0.

Looking for solutions of the form eλx we �nd

2λ2 + 3λ+ 1 = 0

λ =
−3±

√
32 − 4 · 2 · 1
2 · 2

=
−3± 1

4

= −1,−1

2

Therefore,

y = e−x, e−x/2

are both solutions of this form, and the general solution is

y = Ae−x +Be−x/2

In the case that λ1 and λ2 have imaginary parts, we can rewrite the solution in a more compre-

hensible form by using Euler's formula:

Example 4.3. Solve y′′ + 2y′ + 5 = 0.

This time, we have

λ =
−2±

√
22 − 4 · 5
2

= −1±
√
−4

= −1± 2i
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So we can write

y = Ae2ix−x +Be−2ix−x

= e−x
[
Ae2ix +Be−2ix

]
= e−x [(A+B) cos 2x+ (A−B) i sin 2x]

= e−x [C cos 2x+D sin 2x]

for some in general complex C,D ∈ C. However, clearly they will be real for real initial conditions.

Remark. In this last line we have found two functions e−x cos 2x and e−x sin 2x which are linearly

independent and therefore form a basis of the unforced equation given. But they are not eigenfunctions

of the individual di�erential operator d/dx, only of the given left-hand side.

Finally, let us see an example of an equation where the two roots coincide:

Example 4.4 (Degeneracy). Solve y′′ − 6y′ + 9y = 0.

In this case we �nd

λ2 − 6λ+ 9 = 0

(λ− 3)
2

= 0

so that λ1 = λ2 = 3 and there is only one solution. As a result, it is clear that e3x and e3x are not

linearly independent, and as a result they do not form a basis (because we assume the space is two

dimensional, so there must be two basis functions).

4.1.2 Detuning degenerate equations

The �rst method we will use to solve this equation is the same as we employed in Example 3.10, which

had an equation forced by a root of the characteristic equation - we form a family of slightly di�erent

version of the same equation parametrized by some small ε and then let ε→ 0.

Example 4.5. Consider the equations given by

y′′ − 6y′ +
(
9− ε2

)
y = 0

This way of inserting the parameter is simple the easiest to deal with in the general solution of

the equation for ε 6= 0: we try y = eλx and �nd λ = 3± ε.
So

yc = Ae(3+ε)x +Be(3−ε)x

= e3x
(
Aeεx +Be−εx

)
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Now as before, we take a Taylor expansion about ε = 0 (not x) and �nd

yc = e3x
[
A
(
1 + εx+O

(
ε2
))

+B
(
1− εx+O

(
ε2
))]

= e3x
[
(A+B) + εx (A−B) +O

(
Aε2, Bε2

)]
The important idea at this point is to choose the particular solutions (values of A and B) that

we are interested in for each ε. In this case, it seems like a good idea to have

A+B = α

ε (A−B) = β

so that α, β are the two new parameters that we are allowed to choose.

Then

A =
1

2

(
α+

β

ε

)
= O

(
1

ε

)
as ε→ 0

B =
1

2

(
α− β

ε

)
= O

(
1

ε

)
as ε→ 0

so that terms like Aε2 = O (ε), and hence the solution

yc = e3x (α+ βx+O (ε))

→ e3x (α+ βx) as ε→ 0

So we are inclined to guess that this two-parameter function is in fact a solution in the case

ε = 0, though this is not quite a formal proof of the fact. Indeed, if we check it, we readily see that

both e3x and xe3x are solutions of the equation.

Recall from section 3.3.4 on resonant forcing terms that if eλx solves a similar �rst-order equation,

then the general form of a particular solution with forcing term f (x) = ceλx is

yp = dxeλx

It seems we have a similar result here: perhaps all repeated roots are accompanied by an exponential

solution with an added factor of x in the complementary function. Indeed, this is always the case (see

section 6.3).

4.1.3 Reduction of order

When we have a polynomial equation of degree n, and we know a factor (x− λ1), we factor out this

term to get a simpler equation of degree n − 1. You might have wondered if we could do something

similar in the analogous di�erential equation when we know one solution.

In turns out that for the analogous case of the homogeneous, linear di�erential equation we can do
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exactly that. It is called the method of reduction of order.

Assume that y1 is a complementary function solving

ay′′ + by′ + c = 0

Then we will look for another solution y2 given by

y2 (x) = v (x) y1 (x)

We ignore for the moment complications like the fact that y1 (x0) = 0 would guarantee y2 (x) = 0.

Now since y2 is another solution to this equation, we have

0 = a (vy1)
′′

+ b (vy1)
′
+ c (vy1)

= (ay′′1 + by′1 + cy1) v + (2ay′1 + by1) v′ + (ay1) v′′

= (2ay′1 + by1) v′ + (ay1) v′′

=

(
2a
y′1
y1

+ b

)
v′ + av′′

Now since v does not appear in this equation - you can see it must always cancel, even for higher

order equations - this is actually a �rst-order equation for v′. So if we solve a �rst-order equation, then

we determine v′, and hence v up to a constant additive factor, which makes sense because (v + C) y1

is obviously a solution if vy1 is.

If y1 = eλx then we have

(2aλ+ b) v′ + av′′ =
d

dx
[(2aλ+ b) v + av′] = 0

av′ + (2aλ+ b) v = C

Then if λ is a repeated root, we have λ = −b/2a so this gives

av′ = C

v = Dx (+E)

which gives the general solution

y2 = (Dx+ E) eλx

This technique can actually be applied more generally when we do not have constant coe�cients.

4.2 Particular Integrals and Physical Systems

4.2.1 Resonance

Most of the ideas about particular integrals carry straight over from the �rst-order case. The following

table gives the rules of thumb for linear equations with constant coe�cients:
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Forcing term f (x) Guess for particular solution yp (x)

emx Aemx

sin kx, cos kx A sin kx+B cos kx

p (x) = pnx
n + · · ·+ p1x+ p0 q (x) = qnx

n + · · ·+ q1x+ q0

Remember that for linear equations, we can consider forcing terms one at a time, superposing (i.e.

adding together) the resulting solutions.

Again, we must consider what happens when we get forcing proportional to a complementary

function. From past experience, we expect to get an additional factor of x multiplying any such

eigenfunction, and this is roughly what happens. We already know that we can detune equations to

make educated guesses at the form of solutions, and we will see in section 4.4 one new way of obtaining

these results without guesswork, but for now let us simply note that the following approach works:

Example 4.6. Solve y′′ − 2y′ + y = ex + xex.

In this case, we know the complementary functions of the equation can be written as ex and

xex, so both forcing terms are proportional to eigenfunctions.

Let us try and deal with the ex term �rst - clearly, we know that a guess of the form aex will

not work, but also that axex will not either. So try yp = ax2ex - it turns out that this does indeed

work:

y′′p − 2y′p + yp = · · · = 2aex

Similarly, it turns out that yp = ax3ex gives

y′′p − 2y′p + yp = · · · = 6axex

The most interesting case, however, is when a system which would normally oscillate at some

frequency ω0 is forced at that same frequency; this results in a phenomenon called resonance. Because

of the highly physical nature of this problem, we will consider functions y (t) varying in time with

derivatives ẏ and ÿ.

Consider the equation

ÿ + ω2
0y = 0

This has the simple solution

y = A sinω0t+B cosω0t

The question is: what happens if we add a forcing term of sinω0t?

We could leap straight in and guess that there is a particular solution of the form containing a term

like t sinω0t, and possibly also t cosω0t, but since it is useful to see what happens when the system is

forced at frequencies not quite equal to the natural frequency ω0, we will proceed once more by the

method of detuning.

Our equation has the form

ÿ + ω2
0y = sinωt ω 6= ω0
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Figure 4.1: Diagram of near-resonating sinusoidal oscillations, displaying beating

Our guess for a particular solution, then, is accordingly one with sinωt and cosωt. In fact, we

anticipate that cosωt will not appear, since there is no ẏ term in the equation (you can easily check

this).

But since we are interested in adjusting the particular solution to look more and more like a

solution to the homogeneous equation, we can actually subtract the most similar such solution from

the particular solution. Then our guess for the particular solution is

yp = C [sinωt− sinω0t]

ÿp = C
[
−ω2 sinωt+ ω2

0 sinω0t
]

and we can therefore get

C
(
ω2

0 − ω2
)

= 1

which leaves us with

yp =
sinωt− sinω0t

ω2
0 − ω2

We want to rewrite this in terms of ∆ω = ω0 − ω, so we use one of the trigonometric identities for

sums of sine functions to get

yp =
2

(ω0 + ω) ∆ω

[
cos

ωt+ ω0t

2
sin

ωt− ω0t

2

]
=

−1(
ω0 − ∆ω

2

)
∆ω

[
cos

(
ω0 −

∆ω

2

)
t · sin ∆ω

2
t

]
This way of expressing the particular solution we have found neatly summarizes most of its prop-

erties.

• The magnitude of the sinusoidal functions is always bounded by 1, so the maximum magnitude

of this solution is roughly 1/ (ω0∆ω), which grows rapidly as ∆ω → 0.

• There is an underlying sinusoidal oscillation of frequency (ω0 −∆ω/2) u ω0, just as in the

complementary function.
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Figure 4.2: Diagram of eventual linear growth

• There is an envelope of a sinusoidal function with frequency ∆ω/2 → 0, and hence period

2/∆ω →∞.

As a result, when we force the system at close to its natural frequency, we observe what is termed

beating, as shown in Figure 4.1. This modulation of amplitude is clearly audible in some audio setups.

We can also see what happens as ∆ω → 0 - the wavelength of the envelope function tends to

in�nity, and its shape tends towards the �xed linear cone shown as dashed lines in the �gure - exactly

as expected. This limiting case is shown in Figure 4.2.

Mathematically speaking, as ∆ω → 0 we get

yp (t) → − 1

ω0
(cosω0t) ·

(
∆ω
2 t

∆ω

)
= − t

2ω0
cosω0t

Remark. Notice that the oscillation here is generally like cosω0t - this is a characteristic phenomenon

in forced oscillators: they often oscillate out of phase with the driving force.
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4.2.2 Damped oscillators

In the last subsection, we saw how physical systems which would naturally oscillate inde�nitely can be-

have. Often, however, physical systems have some sort of damping force which restricts this behaviour,

causing the system to eventually come to rest in the absence of a driving force. The force leading to

oscillation is the so-called restoring force, which always `points towards the equilibrium solution'.

Let's see what we mean by this. Imagine a mass M attached to a spring, which exerts a force

proportional to the extension from its natural length. Write x for the position of the mass, choosing

the origin x = 0 to be the equilibrium so that the spring exerts a force Fs = −kx on the mass (k is

the spring constant). We can force the spring with some force F (t) if we like.

At the moment, the equation of motion of the system, given by Newton's second law, is

Mẍ = −kx+ F (t)

Mẍ+ kx = F (t)

which is, as we know, a forced simple harmonic oscillator.

Now suppose we restrict the motion by adding a damping mechanism, like a shock absorber in

a car. Let us imagine, for a concrete example, that the motion forces a piston to move through oil,

exerting a force of magnitude |lẋ| opposing the motion due to the oil's viscosity.

The new equation is

ẍ+
l

M
ẋ+

k

M
x =

F (t)

M

On physical grounds, for the unforced version of this equation, we expect behaviour roughly similar

to the harmonic oscillator, with some sort of decay over time (for example, by considering energy lost

doing work on the oil). In fact, we could solve this directly using the techniques available to us.

However, it is useful to parameterize the system more concisely. We can reduce the number of free

parameters by �rst rescaling time via

t =

√
M

k
τ

to eliminate the term multiplying x, and then we have

d2x

dτ2
+ 2κ

dx

dτ
+ x = f (τ)

where

κ =
l

2
√
kM

and f =
F

k

This way of expressing the equation of motion shows that the fundamental characteristics of the

solution are controlled entirely by the parameter κ (the system then needs to be rescaled in time to

account for the t→ τ map).
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Figure 4.3: Lightly damped oscillator

We will �rst restrict our analysis to the case of an undamped system, f = F = 0.

x′′ + 2κx′ + x = 0

Trying solutions of the form eλτ gives us the characteristic equation

λ2 + 2κλ+ 1 = 0

λ = −κ±
√
κ2 − 1

= λ1, λ2

This naturally splits into three di�erent cases, which we will analyze separately.

Lightly damped oscillator In the case κ < 1, we have a solution of the form

x = e−κt
(
A sin

(√
1− κ2τ

)
+B cos

(√
1− κ2τ

))
We call this a damped oscillator : we can see it oscillates at a constant frequency, but with an

exponentially decaying amplitude. An example is shown in Figure 4.3.

The period of oscillation is

Tτ =
2π√

1− κ2

T =
2π√

1− l2

4kM

·
√
M

k

=
4πM√

4kM − l2
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Figure 4.4: Critically damped oscillator

and the decay time, or time taken to reach some speci�c fraction of the original amplitude, is

O

(
1

κ

)
with a characteristic time (or e-folding time, the time needed to reach an amplitude equal to e−1 times

the original amplitude) of

τ =
1

κ

t =

√
M

k
· 1

κ

=

√
M

k
· 2
√
kM

l

=
2M

l

(A related quantity, the Q-factor, is given by 1
2κ .)

Note that as κ → 1, the oscillation period tends to ∞. This gives us some indication of what to

expect in the next case.

Critical damping Here, the solution is

x = (A+Bτ) e−κτ

where we can calculate A and B from the initial conditions:

x (0) = A

x′ (0) = B − κA
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Figure 4.5: Over-damped oscillator

so

A = x (0)

B = x′ (0) + κx (0)

where the derivative x′ (0) is with respect to τ (not t).

This solution decays to 0 most rapidly, for any value of κ.

Note that it displays two main kinds of behaviour, as shown in Figure 4.4 - assuming without loss

of generality that x (0) > 0, either B ≥ 0 and the system decays essentially exponentially to 0 (with

an initial deceleration if x′ (0) > 0), or x′ (0) < 0; or B < 0, and the system passes through the origin

once before gradually decaying coming to rest from the negative direction.

The decay time remains in terms of τ is still O (1/κ), and also the time to the peak is O (1/κ).

Over damping The �nal case has a general solution

x = Aeλ1τ +Beλ2τ

= e−κτ
[
Ae
√
κ2−1τ +Be−

√
κ2−1τ

]
where λ1, λ2 < 0.

Here, the decay time is O (1/λ1) and the time to the peak is O (1/λ2). Note again, as shown in

Figure 4.5, that there are various possible types of behaviour, depending on the initial conditions.

Forced systems In a forced system like this, the complementary function determines the short-term,

transient response, while the particular integral determines the long-term asymptotic behaviour of the

system, provided that the forcing term is not dying away over time.

Example 4.7. ẍ+ 2κẋ+ x = sin τ , κ > 0.
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Figure 4.6: An example of an approximate impulse force

We want to try to �nd a particular solution. Trying x = C sin τ + D cos τ gives C = 0 and

D = −1/2κ.

Hence

x = Aeλ1τ +Beλ2τ − 1

2κ
cos τ

and we know that the complementary function will tend to 0 over time, so we can say that asymp-

totically, x tends to the particular integral:

x ∼ − 1

2κ
cos τ as τ →∞

(The notation f ∼ g means f/g → 1 in the stated limit.)

In general, the response to eiωτ is Aeiωτ for some A ∈ C. Writing A = reiθ, the response is

rei(ωτ+θ), giving rise to a phase-shift of θ in the response. This shift depends on κ and the frequency

ω.

4.2.3 Impulse and point forces

So far, we have dealt entirely with continuous (and indeed usually smooth, or in�nitely di�erentiable)

forcing terms f . Indeed, physically, we expect physical laws to behave mostly in a continuous manner

- positions do not instantly change. However, at least at the macroscopic scale, some events seem to

involve instantaneous or perfectly localized changes, and it may be a simplifying assumption to assume

this, rather than take account of all the tiny, short-lived changes that add up roughly to a very simple

model. We may �nd, then, that velocities or accelerations can be discontinuous in our new model.

Consider, as an example, a ball falling to the ground and bouncing. The force due to hitting the

ground, F (t), will be entirely contained in [t1, t2], where the ball �rst makes contact with the ground

at t1 and leaves it totally at t2. The size of this interval will be small compared to the time spent in

the air for a reasonably rigid or elastic ball, and we can pick a representative point in this interval,
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say T , such that the force is almost entirely concentrated at within some tiny interval [T − ε, T + ε] of

length O (ε).

The form of F (t) in this case would be very di�cult to calculate even numerically, since the ball

would in practice begin vibrating internally, and elastically changing shape, so we would need to know

a lot of information about the ball's internal structure, in order to calculate its vibrational modes, and

so on. But the approximation shown in Figure 4.6 is roughly what we are going to assume to be the

general rule, since it does not really make any di�erence what the exact form of F is for our purposes.

It is then more convenient for the purposes of our analytic approximation to assume that the

collision occurs instantaneously at time t = T - we are essentially taking the physical limit ε → 0.

Mathematically, Newton's second law states (assuming locally constant gravity) that

mẍ = F (t)−mg

so integrating over the small range [T − ε, T + ε] we �nd

ˆ T+ε

T−ε
mẍdt =

ˆ T+ε

T−ε
F (t) dt−

ˆ T+ε

T−ε
mgdt[

m
dx

dt

]T+ε

T−ε
= I − 2mgε

where I =
´
Fdt is de�ned to be the impulse due to F , the area under the force-time curve. This

transfer of momentum is the only macroscopic property of F which is relevant to the variable x.

Hence, for small ε,

∆momentum =

[
m

dx

dt

]T+ε

T−ε
u I

So the only feature of F (t; ε) - F (t) is parameterized by ε to give a family of increasingly localized

forces as ε→ 0 - which we are considering is its time-integral.

We are considering a family of functions D (t, ε) such that

lim
ε→0

D (t, ε) = 0 for all t 6= 0

and

lim
ε→0

ˆ ∞
−∞

D (t; ε) dt = 1

These two properties de�ne, in the limit ε → 0, a distribution, which is not a true function,

but something de�ned almost entirely in terms of its properties when multiplied by a function and

integrated over some suitable range.

Remark. An example of such a family of functions D is given by

D (t; ε) =
1

ε
√
π
e−

t2

ε2

and shown in Figure 4.7.

It is clear that as ε→ 0, the central point D (0, ε)→∞, which is why there is no suitable function
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Figure 4.7: A family of approximate impulses

with the properties of the limit:

lim
ε→0

D (t; ε)

is not de�ned.

However, in practice we think of this limit as de�ning a function:

De�nition 4.8. The Dirac delta function is the generalized function or distribution δ (x) satisfying

ˆ b

a

f (x) δ (x− c) dx =

f (c) if c ∈ (a, b)

0 if c 6∈ [a, b]

for any suitable f (in particular, we require f to be continuous at 0). (We leave the problematic

cases of c = a and c = b aside here.)

Remark. One way of expressing this formally is to say that δ is a linear functional on some space of

functions, so that δ [af (x) + bg (x)] = af (0) + bg (0).

Note that, for example,

lim
ε→0

ˆ ∞
−∞

f (x)D (x; ε) dx = f (0) lim
ε→0

ˆ ∞
−∞

D (x; ε) dx

= f (0)

for continuous f .

This `function' (for our purposes here, we shall act as if it was a typical function) is convenient for

representing and doing calculations with impulses and point forces:

Example 4.9. For the bouncing ball considered above, we can write

mẍ = −mg + Iδ (t− T )

with, say, x (0) = x0 and ẋ (0) = 0. Then we have
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(i) For 0 ≤ t < T , we have mẍ = −mg so

x = −g t
2

2
+At+B

The initial conditions give B = x0 and A = 0, and thus

x (t) = −1

2
gt2 + x0

(ii) For T < t <∞, we also have mẍ = −mg, so again

x = −1

2
gt2 + Ct+D

This time, we apparently lack initial conditions to give us the values of C and D.

(iii) To obtain a solution, we �rst make the (physically based) assumption that x (t) is continuous

at t = T . As t grows to T from below, we have

lim
t→T−

x (t) = −1

2
gT 2 + x0

so we expect this to be the value of x (T ). Then by the assumption, we have

−1

2
gT 2 + CT +D = −1

2
gT 2 + x0

CT +D = x0

(iv) We still need more information to calculate C and D. We can gain some integrating the

di�erential equation over a small interval around the time of the impulse:

ˆ T+ε

T−ε
mẍdt+

ˆ T+ε

T−ε
mgdt =

ˆ T+ε

T−ε
Iδ (t− T ) dt

∆ [mẋ] + 2mgε = I

so taking the limit ε→ 0 we can deduce the change in ẋ at time T

∆ẋ =
I

m

Now we can write down the velocities before and after to obtain another equation:

[−gT ] +
I

m
= [−gT + C]

C =
I

m
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T

Figure 4.8: The solution to the bouncing ball problem, with the velocity superimposed as a dotted
line.

(v) Hence

x (t) =

− 1
2gt

2 + x0 for t ≤ T

− 1
2gt

2 + I
m t+ x0 − I

mT for t > T

= −1

2
gt2 + x0 +

0 for t ≤ T
I
m (t− T ) for t > T

as shown in Figure 4.8.

Remark. Suppose that the solution x (t) had been discontinuous at t = T - then x′ (t) would have a

δ-like singularity at t = T , and x′′ (t) would behave `even more singularly', like the highly irregular

function `δ′', at t = T . The equation mx′′ + mg = Iδ (t− T ) would then not be satis�ed, as can be

seen (for example) by integrating it and noting that the left-hand side has a δ-type singularity, but

the right-hand side is simply a discontinuous step.

The result of integrating the δ function is clearly always a discontinuous step.

De�nition 4.10. The Heaviside step function is de�ned by

H (x) ≡
ˆ x

−∞
δ (t) dt =


0 x < 0

1 x > 0

unde�ned at x = 0

We can write `dHdx = δ (x)' so long as we are careful only to use this relationship inside integrals.
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Example 4.11. We can write the solution to the bouncing ball problem as

x (t) = −1

2
gt2 + x0 +

I

m
(t− T )H (t− T )

which looks exactly like the result we would expect from integrating the original equation twice:

mẍ = −mg + Iδ (t− T )

mẋ = −mgt+ IH (t− T ) + C1

mx = −1

2
mgt2 + I · (t− T )H (t− T ) + C1t+ C0

noting that ˆ x

−∞
H (t) dt =

0 x ≤ 0

x x > 0

As well as cropping up in solutions, this function is useful for posing problems with a state change,

as in when a switch is thrown.

Example 4.12. Consider a simple harmonic oscillator y (t) which has a sinusoidal force applied

to it after t = 2π at the resonant frequency of the system:

y′′ + 4y = sin (2t)H (t− 2π)

Let the initial conditions be y (0) = 1 and y′ (0) = 0. We can solve the problem as before by

breaking it into the two natural cases:

(i) For t < 2π we have y′′ + 4y = 0, and using the initial conditions we have

y = cos (2t)

(ii) For t > 2π we have y′′ + 4y = sin (2t) with general solution

y = A cos (2t) +B sin (2t)− 1

4
t cos (2t)

(iii) By continuity (arguing as before that a discontinuous solution would not satisfy the equation),

we have

cos (4π) = A cos (4π) +B sin (4π)− 1

4
· 2π cos (4π)

1 = A− π

2

A = 1 +
π

2
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T

Figure 4.9: The solution to the switched resonance problem

(iv) Integrating over [2π − ε, 2π + ε] we have

∆ [y′] + 4

ˆ 2π+ε

2π−ε
ydt =

ˆ 2π+ε

2π−ε
sin (2t)H (t− 2π) dt

Now the integral of y vanishes as ε→ 0, because y is bounded near 2π (since it is continuous).

Similarly, the right-hand side is also 0. Hence y′ is also continuous (which we could have

deduced from observing that if it was not then y′′ would have introduce an unbalanced δ-type

singularity into the equation) and hence

0 = 0 + 2B − 1

4
cos (4π) +

1

2
· 2π sin (4π)

B =
1

8

(v) So the solution is

y (t) =

cos 2t t ≤ 2π(
1 + π

2

)
cos 2t+ 1

8 sin 2t− t
4 cos 2t t > 2π

= cos 2t+

0 t ≤ 2π(
π
2 −

t
4

)
cos 2t+ 1

8 sin 2t t > 2π

as shown in Figure 4.9 - the dotted line indicates the forcing term, activated at T = 2π.

Note how the phase of the solution curve changes to be quarter a period ahead of the forcing

instead of quarter a period behind it.

The Heaviside step function is also useful in electrical switched problems.
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4.3 Phase Space

It is useful to look in a little more detail at the language of vector spaces that we have been using,

especially before we move on to solving non-linear equations.

The �rst thing we need to know is how to encode functions.

4.3.1 Solution vectors

A di�erential equation of nth order determines7 the nth derivative y(n) (x) of any solution y (x) in

terms of y (x), y′ (x) and all other derivatives up to y(n−1) (x). In fact, by di�erentiating n times, we

can also work out all higher derivatives.

As a result, all derivatives of y at a point can be worked out using just these n values. So assuming

that the solution has a globally converging Taylor expansion, we have a complete description of the

function everywhere!

y (x) =

∞∑
n=0

y(n) (x0)

n!
(x− x0)

n

We can think in terms of a solution vector

Y (x) =


y (x)

y′ (x)
...

y(n−1) (x)


de�ning a point for each x in an n-dimensional phase space, which is a vector space. As x varies from

x0, Y (x0) contains all the information needed to trace out a trajectory in phase space.

Hence for every point at which the equations have a solution, there is a unique path in phase

space passing through that point. It follows that two di�erent trajectories cannot cross (because if

Y1 (x1) = Y2 (x1) then Y1 (x) = Y2 (x) for all x, so the trajectories are identical).

Example 4.13. Consider for example the equation y′′ + y′/2 + 5y/16 = 0, which has solutions

y = e−x/4±ix/2. We rewrote terms like this in terms of the cos (·) and sin (·) basis before, as in

y1 = e−x/4 cos
x

2

y2 = e−x/4 sin
x

2

which is useful because it means that we can restrict everything to the real case for our purposes.

The solution vectors corresponding to the basis we have chosen are

Y1 =

(
e−x/4 cos x2

− 1
4e
−x/4 (cos x2 + 2 sin x

2

))
7In general, actually, this does not hold: we are assuming the equation can be written as y(n) = f

(
t, y, y′, · · · , y(n−1)

)
where f is some single-valued function. For example, (y′)2 = 4y has two solutions passing through (0, 1), corresponding
to y = (x± 1)2.
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and

Y2 =

(
e−x/4 sin x

2
1
4e
−x/4 (2 cos x2 − sin x

2

))
These are plotted in Figure 4.10, with y on the horizontal axis and y′ on the vertical axis.

Y 1H0L

Y 2H0L

y

y¢

Figure 4.10: The trajectories from Example 4.13. The red dots are spaced at equal values of x.

We will use the idea of solution vectors in section 4.7 (and more generally in section 6) to transform

between higher-order equations and systems of �rst-order equations (or equivalently, �rst-order equa-

tions for vectors), and we will also use them in order to reformulate many of our techniques in a concise

matrix representation. For now, though, we will content ourselves with a particular observation about

how these particular vectors behave, which will be useful in addressing forced equations (as we shall

see in the following section on variation of parameters).

4.3.2 Abel's Theorem

Note that in this phase space, if the solution vectorsY1 (x) andY2 (x) are linearly independent at some

point, then the two solutions y1 (x) and y2 (x) are independent solutions of the di�erential equation.
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Proof. If y1 and y2 are dependent, then we have αy1 + βy2 ≡ 0 for α, β not both zero (this holds

for any x under consideration). Hence αy′1 + βy′2 ≡ 0 as well, so αY1 + βY2 ≡ 0 at all points in

the domain of interest.

So if Y1 and Y2 are linearly independent at some point, then the functions are linearly inde-

pendent.

Note the di�erence in the sense of `linear independence' here: two functions are dependent if and

only if one of them is a constant multiple of the other. There is no particular x involved here - the

functions have to satisfy y1 ≡ λy2 or y2 ≡ µy1 everywhere, so that they are trivial variations on each

other. By contrast, the solution vectors have a property of linear (in)dependence for each x.

Also, note that the converse is not in general true: it is possible for two functions that the Yi are

linearly dependent everywhere, but that the functions are linearly independent. The easiest way to

construct such a function is to glue together, say, x2 and −x2 at x = 0:

f1 (x) = x2

f2 (x) =

x2 x ≥ 0

−x2 x < 0

Then the vectors are

Y1 =

(
x2

2x

)
Y2 =

(
±x2

±2x

)
and clearly Y1 = ±Y2 depending on the sign of x, but f1 6≡ λf2 for all x, for any value of λ, etc. -

again, the di�erent senses of linear dependence are at play here.

Remark. This result obviously extends to higher dimensions.

Now recall that a set of vectors v1, · · · ,vk are linearly independent if and only if the matrix

determinant |v1 v2 · · · vk| containing the columns vi is non-zero.

De�nition 4.14. The Wronskian for a set of functions yi (x) is the determinant W (x) of the

matrix with the solution vectors as columns.

For the second-order case,

W (x) =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣

So if W (x0) 6= 0 for some x0 the solutions are independent.
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Example 4.15. Using the example above, we have

W (x) =

∣∣∣∣∣ e−x/4 cos x2 e−x/4 sin x
2

− 1
4e
−x/4 (cos x2 + 2 sin x

2

)
1
4e
−x/4 (2 cos x2 − sin x

2

) ∣∣∣∣∣
=

1

4
e−2x/4

(
2 cos2 x

2
− sin

x

2
cos

x

2
+ sin

x

2
cos

x

2
+ 2 sin2 x

2

)
=

1

4
e−x/2 · 2

=
1

2
e−x/2 6= 0

Note that in this example, the Wronskian is actually non-zero everywhere. This, in fact, is a general

rule for solutions to linear di�erential equations with a continuity conditions on the coe�cients:

Theorem 4.16 (Abel's Theorem). If W (x0) 6= 0 for some particular value x0, then W (x) 6= 0 for

any value of x, assuming that the coe�cient of y(n−1) is a continuous function when the function is

written in standard form.

We will present here a proof of the two-dimensional case, since it is of special interest to us here.

See section 6.4 for the general proof.

Proof. Write the equation as

y′′ + p (x) y′ + q (x) y = 0

so that p is continuous. This holds for y1 and y2.

Now consider multiplying each equation by the other solution and subtracting:

y2 (y′′1 + py′1 + qy1) = 0

y1 (y′′2 + py′2 + qy2) = 0

[y2y
′′
1 − y1y

′′
2 ] + p [y2y

′
1 − y1y

′
2] = 0

But now note that the term multiplying p is precisely the negative of the Wronskian

−W = −

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ = −y1y
′
2 + y2y

′
1

and that also

W ′ = y1y
′′
2 − y2y

′′
1 + y′1y

′
2 − y′1y′2

= − [y2y
′′
1 − y1y

′′
2 ]
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Hence

−W ′ − pW = 0

W ′ + p (x)W = 0

W = W0e
−
´
p(x)dx

Then since ez 6= 0 for any arbitrary complex number z ∈ C, either W0 = 0 and W (x) ≡ 0 or

W0 6= 0 and W (x) 6= 0 for any x.

Remark. We will use some of the intermediate stages in this proof again. Note that the expression

W = W0e
−
´
pdx

is sometimes known as Abel's Identity. (Again, in section 6.4, the generalization of this statement is

given.)

4.4 Variation of Parameters

In this section we will see how to obtain particular solutions to forced non-linear equations using two

complementary functions. Section 6.5 has the generalized version of this method, for higher dimensional

cases.

We begin by taking a general second-order linear ODE,

y′′ + p (x) y′ + q (x) y = f (x)

and two linearly independent solutions y1 (x) and y2 (x).

Then the solution vectors

Y1 =

(
y1

y′1

)
and Y2 =

(
y2

y′2

)
form a basis of the space of functions satisfying such a second-order equation, for every x, because we

know they remain at all times linearly independent (from Theorem 4.16).

So at any point x, any solution vector Yp can be written as a linear combination of these vectors:

Yp (x) = u (x)Y1 (x) + v (x)Y2 (x)

Note that the coordinates u (x) and v (x) are both functions of x (in general) - what we want now is

an equation for u and v - in fact, we expect them to be determined up to at most an additive constant.

But we have lots of information about the functions involved. Writing the two scalar equations implied

by this vector equation out, we have

yp = uy1 + vy2

y′p = uy′1 + vy′2
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But since we know yp is a solution to the (forced) ODE, we know

y′′p + py′p + qyp = f

(uy′1 + vy′2)
′
+ p (uy′1 + vy′2) + q (uy1 + vy2) = f

But y1 and y2 are solutions to the homogeneous equation, so we can rewrite this as

f = u (y′′1 + py′1 + qy1) + v (y′′2 + py′2 + qy2) + y′1u
′ + y′2v

′

= y′1u
′ + y′2v

′

This is the �rst equation we will use to compute u′ and v′. To obtain another, we can use the

original two equations:

uy′1 + vy′2 = y′p

= (uy1 + vy2)
′

= u′y1 + uy′1 + v′y2 + vy′2

0 = u′y1 + v′y2

So we have (
y1 y2

y′1 y′2

)(
u′

v′

)
=

(
0

f

)
which we can solve by simply inverting the matrix on the left (its determinant is W 6= 0) to get(

u′

v′

)
=

1

W

(
y′2 −y2

−y′1 y1

)(
0

f

)
u′ = − y2

W
f

v′ =
y1

W
f

We can then integrate these equations in order to obtain the u and v required.

The full result can be written in the form

yp = y1

ˆ
−y2f

W
dx+ y2

ˆ
y1f

W
dx

noting that the additive constants in the integrals correspond to adding on multiples of complementary

functions, which was as we expected.

Remark. This method can be generalized to equations of higher order, and we do exactly that in

section 6.5. The key idea is to write the particular solution as a combination of the homogeneous ones.

Yp (x) = u (x)Y1 (x) + v (x)Y2 (x)
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Example 4.17. Solve ÿ + ω2y = sinωt.

We will demonstrate the full technique here for completeness.

We have two solutions, y1 = sinωt and y2 = cosωt. The Wronskian for these solutions is∣∣∣∣∣ sinωt cosωt

ω cosωt −ω sinωt

∣∣∣∣∣ = −ω

Choose u and v so that yp = u sinωt+ v cosωt and ẏp = uω cosωt− vω sinωt. But then

ẏp = uω cosωt+ u̇ sinωt

−vω sinωt+ v̇ cosωt

so

(sinωt) u̇+ (cosωt) v̇ = 0

Also, di�erentiating y′p we have

ÿp = −uω2 sinωt+ u̇ω cosωt

−vω2 cosωt− v̇ω sinωt

and substituting this into the original equation we have

(ω cosωt) u̇− (ω sinωt) v̇ = sinωt

Combining these two equations, we have

u̇ =
cosωt sinωt

ω
=

sin 2ωt

2ω

v̇ = − sin2 ωt

ω
=

cos 2ωt− 1

2ω

Hence, integrating and ignoring any constant factors, we see

u = −cos 2ωt

4ω2

v =
sin 2ωt

4ω2
− t

2ω

Thus the solution we have found is

yp =
1

4ω2
(− cos 2ωt sinωt+ sin 2ωt cosωt)− t

2ω
cosωt

=
sinωt

4ω2︸ ︷︷ ︸
multiple of complementary function

− t

2ω
cosωt︸ ︷︷ ︸

as found by detuning

which is, up to the arbitrary multiples of the complementary function, precisely the result we found

from detuning in section 4.2.1.

97



Recall also that in section 4.2.1 that we tried to solve

y′′ − 2y′ + y = ex + xex

and discovered that x2ex and x3ex gave us the necessary remainders. We can deduce these general

rules for second-order equations using variation of parameters.

Theorem 4.18.

(i) If eλ1x and eλ2x are two independent complementary functions for a second-order linear equa-

tion, then for an equation with forcing term g (x) there is a particular integral of the form(
−eλ1x

[ˆ x

e−λ1tg (t) dt

]
+ eλ2x

[ˆ x

e−λ2tg (t) dt

])
/ (λ2 − λ1)

(ii) If eλx and xeλx are two independent complementary functions for a second-order linear equa-

tion, then for an equation with forcing term g (x) there is a particular integral of the form

eλx
(
−
ˆ x

te−λtg (t) dt+ x

ˆ x

e−λtg (t) dt

)

Proof.

(i) We have the Wronskian

W =

∣∣∣∣∣ eλ1x eλ2x

λ1e
λ1x λ2e

λ2x

∣∣∣∣∣
= eλ1xeλ2x (λ2 − λ1)

so using the results from above,

yp = y1

ˆ
−y2f

W
dx+ y2

ˆ
y1f

W
dx

= −eλ1x

ˆ
eλ2xg (x)

eλ1xeλ2x (λ2 − λ1)
dx+ eλ2x

ˆ
eλ1xg (x)

eλ1xeλ2x (λ2 − λ1)
dx

= −eλ1x

ˆ
e−λ1xg (x)

(λ2 − λ1)
dx+ eλ2x

ˆ
e−λ2xg (x)

(λ2 − λ1)
dx

as required.
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(ii) The Wronskian is now

W =

∣∣∣∣∣ eλx xeλx

λeλx (1 + λx) eλx

∣∣∣∣∣
= e2λx (1 + λx− λx)

= e2λx

so

yp = y1

ˆ
−y2f

W
dx+ y2

ˆ
y1f

W
dx

= −eλx
ˆ
xeλxg (x)

e2λx
dx+ xeλx

ˆ
eλxg (x)

e2λx
dx

= −eλx
ˆ
xe−λxg (x) dx+ xeλx

ˆ
e−λxg (x) dx

These general formulae mean that we can write down solutions for any (continuous, at least) forcing

term in a linear second-order equation with constant coe�cients in the form of an integral.

Remark. In particular, this gives us a particular solution for a forcing term proportional to xkeλx for

an equation with a repeated root:

yp = eλx
[
−
ˆ
x · xkdx+ x

ˆ
xkdx

]
= aeλxxk+2

where we ignore multiples of the complementary functions.

Note that for the case of distinct roots, we can get the general results for xkeλ1x too. Ignoring

constant factors,

yp = −eλ1x

[ˆ
e−λ1xxkeλ1xdx

]
+ eλ2x

[ˆ
e−λ2xxkeλ1xdx

]
= −eλ1x

[
axk+1

]
+ eλ2x

[ˆ
e(λ1−λ2)xxkdx

]
Now if k > 0 is an integer, this last integral evaluates (as may be shown by integration by parts)

to a kth degree polynomial in x multiplied by the same exponential, and the overall expression is a

(k + 1)th degree polynomial in x multiplied by eλ1x. Otherwise, the expression can only be written in

terms of the (incomplete) gamma function

Γ (a; z) =

ˆ ∞
z

ta−1e−tdt
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4.5 Equidimensional Equations

An equidimensional8 equation is an ODE which is invariant under the transformation x→ µx for any

µ 6= 0 - often, we also require that the equation is linear, and sometimes that it is not forced. In this

section, we will consider linear equidimensional functions which are (in general) forced, and by terms

which do not have to respect the scale invariance.

In this case, it is equivalent to the requirement derivatives of the nth order always appear multiplied

by xn, since only then do we get

xn
dny

dxn
→ (µx)

n dny

dxn
· 1

µn
= xn

dny

dxn

We can write an essentially general (up to, for example, x→ x+ δ) second-order equation as

ax2y′′ + bxy′ + cy = f (x)

for a, b, c all constant.

4.5.1 Solving the equation

This simple form of equation admits a general solution - we are essentially interested in eigenfunctions

of the new operator x d
dx , and its square,

x
d

dx

[
x

d

dx

]
≡ x

[
x

d2

dx2
+

d

dx

]
= x2 d2

dx2
+ x

d

dx

But we can see directly from the original operator that any polynomial term xk is an eigenfunction,

because the derivative reduces the power of x by one, and the multiplication restores it:

x
d

dx

[
xk
]

= kx · xk−1 = kxk

So to solve the unforced version of the original equation, we can guess y = xk. We know that we

will then have

a

[
x2 d2

(
xk
)

dx2
+ x

d
(
xk
)

dx

]
+ bx

d
(
xk
)

dx
+ c

(
xk
)

= 0

ak (k − 1) + bk + c = 0

ak2 + (b− a) k + c = 0

This is the characteristic equation for the eigenvalue k, which may be solved to �nd k = k1, k2, and

then if k1 and k2 are distinct, we can write

yc = Axk1 + bxk2

8Confusingly, equidimensional equidimensional equations are also called �homogeneous� equations, which has a dif-
ferent meaning here to �unforced�. Other names include a Cauchy-Euler, Euler-Cauchy and Euler's equation.
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1

1

(a) Distinct roots (not multiplied by lnx)

1

(b) Repeated roots (multiplied by lnx)

Figure 4.11: Example solutions to the logistic equation for real roots

However, this is no help at all if the two roots are the same. Clearly, multiplying the function by

x will not work in this case!

Instead, we must use what we have learned from �nding the typical complementary functions to

work out how to solve the equation. The main idea is to note that the basis functions xk have the

form of ek ln x, so perhaps if we rewrote the equation in terms of z = lnx we would �nd an equation

that we already know how to solve.

The transformation maps x → ez, and d
dx →

d
dez = d

dz/
dez

dz = e−z d
dz so the new equation has the

form

ae2ze−z
d

dz

[
e−z

dy

dz

]
+ beze−z

dy

dz
+ cy = f (ez)

aez
[
e−z

d2y

dz2
− e−z dy

dz

]
+ b

dy

dz
+ cy = f (ez)

a
d2y

dz2
+ (b− a)

dy

dz
+ cy = f (ez)

The left-hand side now has precisely the form of a second-order linear equation with constant

coe�cients. We can see that this has the same characteristic equation as the one we found for k above,

with complementary functions ekz ≡ xk, and what is more, we know that in the case that the roots

coincide, the new solution is

zekz ≡ (lnx)xk

The overall shape of both forms of solution for real k are shown in Figure 4.11.

As a point of interest, note the form of solutions for complex roots k:

y = e(α+βi)z

= eαz [cosβz + sinβz]

= xα [cos (β lnx) + i sin (β lnx)]

Hence we can take xα cos (β lnx) and xα sin (β lnx) to be our two independent solutions. Typical

solutions of the �rst form in this case are shown in Figure 4.12.
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1

Figure 4.12: Equidimensional solution curves for complex roots

Remark. Forced versions of this equation are probably best solved by applying techniques we have

already discussed to the transformed version of the equation.

4.5.2 Di�erence equation analogues

There are two ways in which we can view the discrete version of an equidimensional equation.

Typical case Firstly, consider a general linear recurrence relation of the form

ayn+2 + byn+1 + cyn = fn

We can solve this by �nding the form of eigenfunctions of the map yn → yn+1, and exploiting the

linearity of the equation.

But clearly, the eigenfunctions of yn → yn+1 are just yn = kn, with the corresponding eigenvalue

k, because then

yn+1 = k · kn = kyn

Remark. Alternatively, the (forward) di�erence operator D [yn] is de�ned by

D [yn] = yn+1 − yn

and it too has eigenfunctions yn = kn:

D [yn] = kn+1 − kn

= (k − 1) yn

So to solve the original equation, we can think of it as

AD2 [yn] +BD [yn] + Cyn = fn
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where A = a, B = b+ 2a and C = c+ b+ a, and then solve from there.

Either way, we will end up with the clear characteristic equation

akn+2 + bkn+1 + ckn = 0

ak2 + bk + c = 0

with solutions k = k1, k2.

The general complementary functions are then

yn = Akn1 +Bkn2

for distinct roots.

In the case of a repeated root, it is not very surprising that we get solutions of the form

yn = (A+Bn) kn

Particular integrals are of broadly the same form as we have discussed previously:

Inhomogeneity fn Term of particular solution yn

kn for root k kn, n · kn, · · ·

bn bn

np Anp +Bnp−1 + · · ·+ Cn+D

anp + bnp−1 + · · ·

Example 4.19. Consider the modi�ed Fibonacci sequence Gn = Gn−1 + Gn−2 + 1, with initial

conditions G0 = 0 and G1 = 1. This has terms

0, 1, 2, 4, 7, 12, 20, 33, · · ·

The characteristic equation is k2 − k − 1 = 0 which has solutions

k =
1±
√

5

2

= Φ,− 1

Φ

Let us �rst try to �nd a particular solution. Referring to the above table, we see the forcing is

of the form 1n, so we guess a particular solution

Gn = a · 1n = a
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which is easily found to be correct for

a = a+ a+ 1

0 = a+ 1

a = −1

Then we have

Gn = AΦn +B

(
− 1

Φ

)n
− 1

Now we can �nd A and B:

G0 = A+B − 1 = 0

G1 =

(
1 +
√

5
)

2
A+

(
1−
√

5
)

2
B − 1

=
A+B

2
+

(
A−B

2

)√
5− 1

= 1

So we have

A+B = 1

A−B =
3√
5

A =
3 +
√

5

2
√

5
=

Φ2

√
5

B =
3−
√

5

2
√

5
=

(−1/Φ)
2

√
5

which gives

Gn =
Φn+2 +

(
− 1

Φ

)n+2

√
5

− 1

= Fn+2 − 1

Indeed, if we add 1 to the sequence for Gn we get

1, 2, 3, 5, 8, 13, 21, 34, · · ·

which is precisely the Fibonacci sequence shifted by two places (assuming F0 = 0 and F1 = 1).
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Alternative analogy The other way in which it is possible to draw an analogy with a discrete

equation is via the more complicated expression given, for a �xed integer m, by

fm (n) = n (n+ 1) · · · (n+m− 1)

The point about this function is the properties it has with respect to the forward di�erence operator

D [·]:

D [fm (n)] = fm (n+ 1)− fm (n)

= (n+ 1) (n+ 2) · · · (n+m− 1) [(n+m)− n]

=
m

n
fm (n)

It can be shown that repeating this process k times gives us

Dk [fm (n)] = f (k)
m (n) =

m (m− 1) · · · (m− k + 1)

n (n+ 1) · · · (n+ k − 1)
fm (n)

= m (m− 1) · · · (m− k + 1)
fm (n)

fk (n)

This is very similar to the fact that

dk

dxk
[xm] = m (m− 1) · · · (m− k + 1)

xm

xk

which is what we used to solve the equidimensional equation, in which terms of the form xk dky
dxk

appear.

In fact, we can use this to solve equations like

an (n+ 1) y(2)
n + bny(1)

n + cyn = 0

because we can guess solutions like yn = fm (n) and solve for m:

afm (n) ·m (m− 1) + bfm (n) ·m+ cfm (n) = 0

am (m− 1) + bm+ c = 0

which is the same form of the characteristic equation as we had before.

Example 4.20. Solve n (n+ 1) yn+2 − 2n (n+ 1) yn+1 − (2 + n (n+ 1)) yn = 0.

This is not currently of the stated form, since we need terms like y
(2)
n and so on. Let us rewrite

this:

n (n+ 1)
[
y(2)
n + 2yn+1 − yn

]
− 2n (1 + n) yn+1 − (2 + n (n+ 1)) yn = n (n+ 1) y(2)

n − 2yn = 0
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Now it is as required, so we can attempt a solution yn = fm (n). We need to solve

m (m− 1)− 2 = 0

(m+ 1) (m− 2) = 0

m = −1, 2

Hence our general solution is

yn =
A

n− 1
+Bn (n+ 1)

demonstrating that this works for m < 0.

Remark. This approach also works for non-integer m if we use the Γ function instead of the partial

factorials:

fm (n) =
Γ (n+m)

Γ (n)

4.6 Series Solutions

So far, we have mainly looked at special cases of linear second-order equations, notably those with

constant coe�cients, and equidimensional equations. However, it is obviously not always the case that

we can �nd an analytic solution.

In section 3.6, we developed chie�y graphical methods for analyzing �rst-order equations. Here, we

will develop a more algebraic approach to solving equations like

a (x) y′′ + b (x) y′ + c (x) y = 0

or, where appropriate,

y′′ + p (x) y′ + q (x) y = 0

The idea is that we try to �nd solutions as (in general in�nite) series in terms of powers of the

independent variable x. We are most familiar with one type of power series, Taylor series, where the

powers are all non-negative integers, as in

∞∑
n=0

an (x− x0)
n

though for the rest of this section we will work mainly with the translated case x0 = 0, so that this

would be the Maclaurin series
∞∑
n=0

anx
n

It turns out that it is not always possible to solve equations in this form, but we can often �nd a

similar form of solution. It will be useful to classify points according to the behaviour of the series for
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the coe�cients as follows:

De�nition 4.21. x = x0 is an ordinary point if p (x) ≡ b(x)
a(x) and q (x) ≡ c(x)

a(x) have Taylor series

about x0.

Otherwise, x0 is a singular point. If x0 is singular, but the equation may be written in the form

A (x) (x− x0)
2
y′′ +B (x) (x− x0) y′ + C (x) y = 0

where B(x)
A(x) ≡ (x− x0) p (x) and C(x)

A(x) = (x− x0)
2
q (x) have Taylor series here, then we say x0 is

a regular singular point - otherwise, it is irregular.

Remark. Another way the di�erence between the types of singular points is commonly expressed is

that a regular singular point has p and q with poles at most order 1 and 2 respectively. Note that we

rewrite the equation in equidimensional form to see its behaviour.

Recall that the Taylor series expansion must exist and converge for all x in some interval containing

x0, but not necessarily everywhere.

Here are a few examples for clarity:

Example 4.22. You can check the following cases as an exercise.

(i)
(
1− x2

)
y′′ − xy′ + 5y = 0. Here, x = 0 is ordinary, and x = ±1 are regular singular points.

(ii) (sinx) y′′ + (cosx) y′ + 5y = 0. All points of the form x = nπ for integer n are singular, but

they are in fact regular.

(iii) (1 +
√
x) y′′−xy′+5y = 0. The point x = 0 is now an example of an irregular singular point.

4.6.1 Taylor series solutions

Let's �rst look at an example of an equation which can be solved using a Taylor series.

Example 4.23. Solve

y′′ + xy′ − 2y = 0

Let us expand about the point x = 0 (for no reason other than it makes the bookkeeping easier),

so that our trial (Taylor series) solution is

y =

∞∑
n=0

anx
n

Then the equation can be written in terms of an in�nite sum, since for example

y′ =

∞∑
n=0

nanx
n−1
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However, to make the manipulations clearer, we will consider the equation in the pseudo-

equidimensional form we used in classifying stationary points:

(
x2y′′

)
+ x2 (xy′)− 2x2 (y) = 0

Then we have
∞∑
n=0

[
n (n− 1) + nx2 − 2x2

]
anx

n = 0

We want to extract some information about the coe�cients an, but this is obviously di�cult

since the powers of x are interleaved arbitrarily into the equation. To try to solve this problem, let

us reorganize the terms into the following form:

∞∑
n=0

[n (n− 1) an + an−2 (n− 2)− 2an−2]xn = 0

where we have just realized that terms like f (n)x2 ·xn = f (n)xn+2 can equally well be written as

f (n− 2)xn, just appearing 2 places later in the sequence. We have invented new coe�cients a−1

and a−2, which are both 0, in order to enable us to do this without separating out the n = 0, 1

cases.

But now since both sides are identical, we can just compare coe�cients of xn!

n (n− 1) an + an−2 (n− 2)− 2an−2 = 0

n (n− 1) an = (4− n) an−2

This allows us to work out the coe�cients in the power series, provided we have some initial

terms, a0 and a1, as for n 6= 0, 1 we have

an =
4− n

n (n− 1)
an−2

so

a2 =
2

2
a0

a4 =
0

4 · 3
a2 = 0

a2m = 0

and

a3 =
1

3 · 2
a1

a5 =
−1

5 · 4
a3 = − 1

5 · 4 · 3 · 2
a1

a7 =
−3

7 · 6
a5 =

3

7!
a1

a2m+1 = (−1)
m+1 1 · 3 · · · · · (2m− 3)

(2m+ 1)!
a1 for m > 1
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Hence if we take the case a0 = 1, a1 = 0 we get the solution

y1 = 1 + x2

and if we take a0 = 0, a1 = 1 we get

y2 = x+
1

6
x3 − 1

120
x5 +

1

1680
x7 − · · ·

· · ·+ (−1)
m+1 1 · 3 · · · · · (2m− 3)

(2m+ 1)!
x2m+1 + · · ·

These two solutions can then be used as the basis of a general solution

y = Ay1 +By2

exactly as before.

This gives the reader a fairly good example of what to expect in many situations - sometimes one

or more solutions will have a polynomial expression; sometimes they will be in�nite, in which case

the solutions will converge over at least the same range as the coe�cients p (x) and q (x) do (see next

section) - hence in the case of functions like these, which are everywhere equal to their Taylor series

about any point, the solutions should also be universally de�ned by a single Taylor series. In general,

analytic coe�cients which are locally equal to Taylor series about any point have analytic solutions.

In�nite expressions can also be sometimes be identi�ed in closed form, though in general we have no

reason to expect they can - there is no natural way to express the second solution above.

It is a general result (due to Frobenius and Fuchs) that if x0 is a regular point, there will be Taylor

series solutions:

Theorem 4.24. If p (x) and q (x) both have Taylor series in some interval about x0, then there are

two independent solutions to the equation y′′ + p (x) y′ + q (x) y = 0 of the form

y =

∞∑
n=0

an (x− x0)
n

which converge over at least the same region as p and q.

We will not prove this result here.

For an example where p and q do not have Taylor series that converge everywhere, consider the

following example:

Example 4.25. Solve

(1− x)
2
y′′ − (1− x) y′ − y = 0

We will expand around x = 0 again, noting that p = 1/ (1− x) and q = 1/ (1− x)
2
both have
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Taylor expansions at this point which are only valid for |x| < 1. Again, assume there is a locally

convergent solution

y =
∑

anx
n

and proceed to adjust the equation and compare coe�cients:

(
1− x2

) (
x2y′′

)
−
(
x− x2

)
(xy′)− x2y = 0

Thus: ∑[
n (n− 1)− 2n (n− 1)x+ n (n− 1)x2 − nx+ nx2 − x2

]
anx

n = 0∑[
n (n− 1)− n (2n− 1)x+ (n− 1) (n+ 1)x2

]
anx

n = 0∑
[n (n− 1) an − (n− 1) (2n− 3) an−1 + (n− 3) (n− 1) an−2]xn = 0

(n− 1) [nan − (2n− 3) an−1 + (n− 3) an−2] = 0

This equation looks unpleasant, but it is actually quite easy to pick out simple forms for the

solution by clever choices of a0 and a1.

First, note that 2a2−a1−a0 = 0, and that 3a3−3a2 = 0. The second equation tells us a3 = a2.

Note that if an−1 = an−2 then we have

nan + (n− 3− 2n+ 3) an−1 = 0

nan = nan−1

an = an−1

Hence all series solutions have constant terms beyond a2! So the natural �rst choice is to make

these all vanish, which from the �rst equation happens when a1 + a0 = 0. Indeed, a0 = 1 and

a1 = −1 gives us the solution

y = 1− x

For the other solution, let us choose the neat solution a0 = 1, a1 = 1 since then all terms are

identically 1:

y = 1 + x+ x2 + x3 + · · ·

This solution we can recognize instantly as being the Taylor series, valid for |x| < 1, for

y =
1

1− x

It is easy to verify that both of these closed-form solutions work for all x, even outside the

radius of convergence of the coe�cients, though the power series is only valid for the same range

as those, namely |x| < 1.

Remark. We could have solved the above equation analytically using the methods from the section on
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equidimensional equations: making the translation u = x− 1 we have

u2y′′ + uy′ − y = 0

with characteristic equation

λ (λ− 1) + λ− 1 = 0

λ2 − 1 = 0

λ = ±1

which means the solutions are directly equivalent to the solutions found above:

y = u,
1

u

= x− 1,
1

x− 1

4.6.2 Frobenius series solutions

So how can we modify the Taylor form of a solution y (x) for the general case that a singular point

exists? It turns out that there are at most two modi�cations needed to �nd such a solution. The main

concept is to allow non-integer powers for the terms in the series, an idea best introduced with an

example:

Example 4.26. Consider

2xy′′ + 3y′ − y = 0

This equation has a regular singular point at x = 0:

2
(
x2y′′

)
+ 3 (xy′)− xy = 0

Hence let us try a solution of the form

y =

∞∑
n=0

anx
n+σ = xσ

∞∑
n=0

anx
n

Note that this is not a Taylor series, but instead a Frobenius series. We will need to determine

the new index σ as well as the coe�cients an - in fact, to avoid the problem of having x+ x2 + · · ·
and x (1 + x+ · · · ) as distinct solutions, we will require a0 6= 0, so that σ is �xed to be the �rst

power to appear with a non-zero coe�cient in the series expansion.

We continue as before, remembering that we have to di�erentiate with σ in the power, so that
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we have

∞∑
n=0

[2 (n+ σ) (n+ σ − 1) + 3 (n+ σ)− x] anx
n+σ = 0

∞∑
n=0

[[(n+ σ) (2n+ 2σ + 1)] an − an−1]xn+σ = 0

This gives us the general recurrence relation for the problem:

[(n+ σ) (2n+ 2σ + 1)] an − an−1 = 0

Now n = 0 gives the so-called indicial equation, from the requirement that a0 6= 0 and the fact

that a−m = 0 for any m:

(0 + σ) (0 + 2σ + 1) = 0

σ (2σ + 1) = 0

σ = −1

2
, 0

This allows us to split the analysis into the two cases according to these two roots:

σ = − 1
2 : We have the recurrence relation

an =
an−1(

n− 1
2

)
· 2n

=
an−1

(2n− 1) · n

so for a given a0 we have

a1 =
a0

1 · 1
a2 =

a1

3 · 2
=

a0

(3 · 1) · (2 · 1)

a3 =
a2

5 · 3
=

a0

(5 · 3 · 1) · (3 · 2 · 1)

an =
a0

(2n− 1) (2n− 3) · · · · 5 · 3 · 1 · n!

=
a0

[(2n)!/ (2n · (2n− 2) · · · · 4 · 2)] · n!

=
a0

[(2n)!/ (2nn!)] · n!

=
2na0

(2n)!
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This gives the solution

y1 = a0x
− 1

2

∞∑
n=0

2nxn

(2n)!

= a0x
− 1

2

∞∑
n=0

(2x)
n

(2n)!

= a0x
− 1

2

∞∑
n=0

(√
2x
)2n

(2n)!

= a0x
− 1

2 cosh
(√

2x
)

which we are lucky enough to be able to write in closed form.

σ = 0: This solution has recurrence relation

an =
an−1

n (2n+ 1)

and the solution is, similarly to the above, given by

an =
a0

n! (2n+ 1)!/ (2nn!)

=
2na0

(2n+ 1)!

and hence

y2 = a0x
0
∞∑
n=0

2nxn

(2n+ 1)!

= a0

∞∑
n=0

(√
2x
)2n

(2n+ 1)!

=
a0√
2x

∞∑
n=0

(√
2x
)2n+1

(2n+ 1)!

=
a0√

2
x−

1
2 sinh

(√
2x
)

which again is fortunately amenable to a closed form representation.

The general solution is therefore

y = x−
1
2

[
A cosh

√
2x+B sinh

√
2x
]

Now we can run into di�culties when the roots of the indicial equation are separated by an integer,

because it is possible that the second solution gets `caught up' in the �rst, in some sense. Here are

two examples, the �rst of which shows that it is still possible that the basic approach works, and the

second of which shows how it can totally fail.
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Example 4.27. Consider

9y′′ − 6

x
y′ +

(
9 +

4

x2

)
y = 0

This equation has a regular singular point at x = 0:

9
(
x2y′′

)
− 6 (xy′) +

(
9x2 + 4

)
y = 0

Hence let us try a solution of the form

y =

∞∑
n=0

anx
n+σ = xσ

∞∑
n=0

anx
n

This gives us the equation

∞∑
n=0

[
9 (n+ σ) (n+ σ − 1)− 6 (n+ σ) + 9x2 + 4

]
anx

n+σ = 0

∞∑
n=0

[[3 (n+ σ) (3n+ 3σ − 5) + 4] an + 9an−2]xn+σ = 0

So the recurrence relation is

[3 (n+ σ) (3n+ 3σ − 5) + 4] an + 9an−2 = 0

The indicial equation is easily solved:

3 (0 + σ) (0 + 3σ − 5) + 4 = 0

9σ2 − 15σ + 4 = 0

(3σ − 1) (3σ − 4) = 0

σ =
1

3
,

4

3

Now we have two roots separated by an integer, namely 1. Let us see what happens:

σ = 1
3 : We have the recurrence relation

an = − 9an−2

(3n+ 1) (3n− 4) + 4
= − an−2

n (n− 1)

so for even n, we have

a2m = (−1)
m a0

(2m)!

and for odd n we have an arbitrary a1 followed by

a2m+1 = (−1)
m a1

(2m+ 1)!
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σ = 4
3 : Already implicitly taken account of by the freedom in choice of a1.

The general solution can therefore be written as

y = x
1
3 [a0 cosx+ a1 sinx]

This case worked out to give us two solutions; however, this does not necessarily have to happen:

Example 4.28. Consider

x2y′′ + xy′ +
(
x2 − k2

)
y = 0

where k ≥ 0 is an integer.

This equation manifestly has a regular singular point at x = 0. So guess

y =

∞∑
n=0

anx
n+σ

Thus we have

∞∑
n=0

[
(n+ σ) (n+ σ − 1) + (n+ σ) + x2 − k2

]
anx

n+σ = 0

∞∑
n=0

[[
(n+ σ)

2 − k2
]
an + an−2

]
xn+σ = 0

So the recurrence relation is [
(n+ σ)

2 − k2
]
an + an−2 = 0

Solving the indicial equation gives us the values for σ:

(0 + σ)
2 − k2 = 0

σ = ±k

Again, we have two roots separated by an integer, 2k. Let us see what happens:

σ = k: We have the recurrence relation

an = − an−2

n (n+ 2k)

so for even n, we have

a2m = (−1)
m
a0

1

2m (2m− 2) · · · · 4 · 2× (2m+ 2k) (2m+ 2k − 2) · · · · (2 + 2k) · 2k

= (−1)
m
a0

k!

2m (m)!2m (m+ k)!

= a0k! (−1)
m 1

22m (m)! (m+ k)!
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and for odd n we have an = 0 since a1 = a−1/ (1 + 2k) = 0, and future values are all

easily seen from this as being zero.

Thus, rescaling slightly by 1/
(
k!2k

)
, we have the solution

y1 = a′0Jk (x) ≡ a′0xk
∞∑
m=0

(−1)
m

22m+km! (m+ k)!
x2m

(Jm (x) is called a Bessel function of the �rst kind)

σ = −k: This time, we have

an = − an−2

n (n− 2k)

which again gives an = 0 for odd n. However, for even n something surprising happens:

the formula becomes invalid at n = 2k. Let us go back, then, to the original recurrence

relation
[
(n+ σ)

2 − k2
]
an + an−2 = n (n− 2k) an + an−2 = 0. At n = 2k this tells us

0an + an−2 = 0

an−2 = 0

But then an−4 = − (n− 2) (n− 2− 2k) an−2 = 0, and so on, all the way back to a2 = 0.

But then

2 · (2− 2k) a2 + a0 = 0

implies that a0 = 0, which is a contradiction! (Recall we originally choose σ so that a0

was the least non-zero coe�cient.)

Hence there is no general solution of this form, as one degree of freedom is insu�cient to match

any initial conditions.

So what are we missing? To work out the form of the next solution, we can apply the techniques

we developed in section 4.1.3 on the method of reduction of order.

y2 = vy1

y′′ + py′ + qy = 0

(v′′y1 + 2v′y′1 + vy′′1 ) + p (v′y1 + vy′1) + qvy1 = 0

v [y′′1 + py′1 + qy1] + v′′y1 + (2y′1 + py1) v′ = 0

v′′y1 + (2y′1 + py1) v′ = 0
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From this equation we can immediately solve for v′:

v′′

v′
= −2y′1 + py1

y1

ln |v′| = −2 ln |y1| −
ˆ
pdx

v′ =
1

y2
1

e−
´
pdx

Then it follows that there is a solution

y2 = y1

ˆ
1

y2
1

e−
´
pdxdx

or, writing this more carefully,

y2 (x) = y1 (x)

ˆ x 1

y2
1 (t)

e−
´ t p(u)dudt

which is a result that can also be derived from using the Wronskian W = W0e
−
´
pdx.

Now assume we already have a series solution for y1 (x) which we will write as

y1 = xσ1

∞∑
n=0

anx
n

taking x0 = 0 for simplicity, and that we also have a Taylor series for xp (x) that we write

p =
α−1

x
+

∞∑
n=0

αnx
n

and x2q (x) that we write

q =
β−2

x2
+

∞∑
n=0

βnx
n

Now the indicial equation can be calculated in terms of these series by expanding xp and x2q as

follows:

(
x2y′′

)
+ (xp) (xy′) +

(
x2q
)
y = 0

∞∑
n=0

[
(n+ σ) (n+ σ − 1) + xp (x) (n+ σ) + x2q (x)

]
anx

n+σ = 0

σ (σ − 1) + α−1σ + β−2 = 0

σ2 + (α−1 − 1)σ + β−2 = 0

Hence the sum of the two roots is σ1 + σ2 = 1− α−1, and we already know that σ1 − σ2 = m ≥ 0

is a non-negative integer (as σ1 was assumed to be the larger root, and they di�er by an integer). It
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follows that 2σ1 = 1− α−1 +m so that

y2
1 (t) = (tσ1)

2

[ ∞∑
n=0

ant
n

]2

= t2σ1

[ ∞∑
n=0

ant
n

]2

= t(1−α−1)+m
∞∑
n=0

a′nt
n

for some other set of coe�cients a′n - note that a′0 6= 0 still holds. The other expression we need a

Taylor series for is exp
(
−
´ t
pdu

)
:

exp

(
−
ˆ t

pdu

)
= exp

(
−
ˆ t
[
α−1

u
+

∞∑
n=0

αnu
n

]
du

)

= exp

(
−α−1

ˆ t du

u

)
exp

(
−
∞∑
n=0

α′nt
n

)

= t−α−1

∞∑
n=0

α′′nt
n

for new coe�cients α′n and α′′n, noting that exp (f (x)) = 1 +f (x) +f (x)
2
/2 + · · · is everywhere equal

to its power series for the second term, and recalling the results on e
´

dx
x discussed in section 3.1 for

the �rst. (The constant term from the integral is absorbed into the α′′n.)

We are now ready to construct y2:

y2 (x) = y1 (x)

ˆ x 1

y2
1 (t)

e−
´ t p(u)dudt

= y1 (x)

ˆ x
[
t(1−α−1)+m

∞∑
n=0

a′nt
n

]−1

t−α−1

∞∑
n=0

α′′nt
ndt

= y1 (x)

ˆ x

t−1−m

[ ∞∑
n=0

a′nt
n

]−1 ∞∑
n=0

α′′nt
ndt

Now recall that a′0 6= 0, so that the ratio of the two Taylor series itself has a Taylor series around

t = 0 (as the denominator has a non-zero value a′0 at this point); hence we can write

y2 = y1

ˆ x

t−1−m
∞∑
n=0

γnt
ndt

Now assuming that we can integrate the series term by term9 we get a few initial terms integrating

negative powers of t, then another Taylor series. The reason that a special case arises for integer m is

that we can have (though we do not necessarily have to) a term t−1−mγmt
m = γm/t which does not

integrate to give a polynomial:

y2 = y1

[
x−m

∞∑
n=0

γ′nx
n + γm lnx

]
9This is valid; there are a few initial terms with negative powers of t, and then a Taylor series. The integrated

expression for a Taylor series has the same radius of convergence as the original.
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The general solution has a ln-type singularity at x = 0!

Note that by recalling the expression for y1 as a power series, we can incorporate this into the new

Taylor series via

y2 = γmy1 lnx+ x−m

[
xσ1

∞∑
n=0

anx
n

][ ∞∑
n=0

γ′nx
n

]

= γmy1 lnx+ xσ1−m

[ ∞∑
n=0

bnx
n

]

= γmy1 lnx+ xσ2

[ ∞∑
n=0

bnx
n

]

Indeed, it turns out that the remaining solution is in general of the form

y2 = ln (x− x0) y1 +

∞∑
n=0

bn (x− x0)
n+σ2

where y1 =
∑∞
n=0 an (x− x0)

n+σ1 is the normal solution corresponding to the larger solution σ1 ≥ σ2.

Example 4.29. The second solution to x2y′′ + xy′ +
(
x2 − k2

)
y = 0 where k ≥ 0 is an integer is

of the form

y2 = lnxJk (x) +

∞∑
n=0

bnx
n−k

There is in fact a general theorem about the existence of these solutions10, which we are not going

to prove formally here.

Theorem 4.30 (Fuchs). If x = x0 is a regular singular point, then there is at least one solution to

the equation y′′ + py′ + qy = 0 of the form

y1 =

∞∑
n=0

an (x− x0)
n+σ

and any other solution is either of the same form, or of the form

y2 = ln (x− x0) y1 +

∞∑
n=0

bn (x− x0)
n+τ

where y1 is a solution of the �rst form. The power series have a radius of convergence at least as

large as those of the relevant coe�cients.

10See �Lectures on di�erential and integral equations� by K	osaku Yosida.
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As a �nal observation, note that if we have a forced equation

y′′ + p (x) y′ + q (x) y = g (x)

then solving this for power series is precisely equivalent to �nding a particular solution and then solving

the homogeneous version of the equation; as a result, essentially the same ideas apply, if we assume

that we can �nd a particular solution.

4.7 Systems of Linear Equations

Another case we have conspicuously failed to address so far is that where we have more than one

unknown variable. Consider, for example, the two �rst-order equations

ẏ1 = ay1 + by2 + f1 (t)

ẏ2 = cy1 + dy2 + f2 (t)

We can write this more concisely in terms of a vector Y, using yet another vector notation:

Ẏ = MY + F

where

Y =

(
y1

y2

)
, M =

(
a b

c d

)
, F =

(
f1

f2

)
More generally, M = M (t) can be a function of the independent variable, if we wish to encode

equations without constant coe�cients. However, we will leave these ideas until section 6, where we

will discuss the general solution of these equations.

4.7.1 Equivalence to higher-order equations

The �rst notable thing we can do is perhaps suggested by the vector formulation of the problem - it is

clear that the case where Y is a solution vector with entries y and ẏ corresponds to something like a

second-order equation. In fact, let us take an equation

ÿ + aẏ + by = f

and write y1 = y, y2 = ẏ. Then ẏ = y2 and ẏ2 = ÿ = f − ay2 − by1 so

Ẏ =

(
0 1

−b −a

)
Y +

(
0

f

)

As we will see in the later section, we can easily extend this to write any nth-order ODE as a

system of n �rst-order ODEs.

Strikingly, though, it is also possible to reverse this reduction, and transform a two-variable �rst-
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order problem into a one-variable second-order problem. Consider the value of ÿ1:

ÿ1 = aẏ1 + bẏ2 + ḟ1

= aẏ1 + (bcy1 + bdy2 + bf2) + ḟ1

= aẏ1 + bcy1 + d (ẏ1 − ay1 − f1) + bf2 + ḟ1

ÿ1 − (a+ d) ẏ1 + (ad− bc) y1 = bf2 − df1 + ḟ1

Note that the homogeneous version of this equation is simply

ÿ1 − tr (M) ẏ1 + det (M) y1 = 0

where tr and det are the trace and determinant respectively - in fact, for this constant coe�cient

case, this has exactly the same characteristic equation as the matrix! Therefore, the eigenvalues of the

matrix are precisely the eigenvalues of the di�erential operator here.

Once y1 is known, �nding y2 is trivial from the original equations (although if b = 0 we have to

solve the second �rst-order ODE for y2). We note that y2 should have solutions which are multiples

of the same eigenfunctions.

4.7.2 Solving the system

The fact that the solutions for y1 are in general of the form eλt (and the related eigenfunctions) where

λ is an eigenvalue of the matrix suggests that we may be able to solve this problem in a very similar

way to the one-dimensional case, by looking for constant multiples of the complementary function.

Consider

Ẏ = MY + F

Ẏ −MY = F

We guess that there is a complementary function of the form

Yc = veλt

noting that the equation is still linear. This implies that

λveλt −Mveλt = 0

Mv = λv

which is precisely the statement that v is an eigenvalue of the matrix M with eigenvalue λ, which �ts

in very well from what we noted above.

Recall that we can obtain the characteristic equation for matrix eigenvalue λ by noting that

(M − λI)v = 0 for some v 6= 0, and hence det (M − λI) = 0. Then we must �nd the appropri-

ate vector v.

Remark. We will not address the case of a repeated eigenvalue, where we may not even have two
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eigenvectors, or of forcing proportional to an eigenvalue, in this section. The generalizations from the

single-variable case are fairly direct, and we will give a more complete treatment in section 6.3.

Example 4.31. Solve

Ẏ =

(
−2 1

15 −4

)
Y

Consider the trial complementary function Yc = veλt. Then we have∣∣∣∣∣ −2− λ 1

15 −4− λ

∣∣∣∣∣ = 0

(2 + λ) (4 + λ)− 15 = 0

λ2 + 6λ− 7 = 0

(λ− 1) (λ+ 7) = 0

so the eigenvalues are λ = 1,−7. We must �nd the eigenvector for each case:

λ = 1: We see (M − λI)v = 0, so (
−3 1

15 −5

)(
v1

v2

)
= 0

−3v1 + v2 = 0

and hence one solution is

v =

(
1

3

)

λ = −7: We have (
5 1

15 3

)(
v1

v2

)
= 0

5v1 + v2 = 0

and so

v =

(
1

−5

)

So the general complementary function (our general solution) can be written as

Y = A

(
1

3

)
et +B

(
1

−5

)
e−7t

y1 = Aet +Be−7t

y2 = 3Aet − 5Be−7t
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y1

y2

Figure 4.13: The trajectories in phase space of the example

Just as we could draw a two-dimensional phase-space for second order equations, with variables

y1 and ẏ1, it is possible to depict all behaviour of systems like this on a diagram with one axis

corresponding to y1 and another corresponding to y2. Figure 4.13 shows that the system has a saddle

point at (0, 0), and hence this point is overall unstable, because an initial point with a small component

in the (1, 3) direction will tend to ±∞.

In general, if

Y = v1e
λ1t + v2e

λ2t

then we categorize the point (0, 0) as follows, ignoring the degenerate cases with repeated roots (for

examples, see Figure 4.14):

123



(a) Saddle (b) Stable node, or nodal sink

(c) Unstable node, or nodal source (d) Stable spiral, or spiral sink

(e) Unstable spiral, or spiral source (f) Centre

Figure 4.14: Flow diagrams for non-degenerate solutions
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(i) If λ1, λ2 are both real, and one is positive and the other negative, then we get a saddle as was

shown in our example Figure 4.13.

(ii) If they are both real and have the same sign, with λ1 6= λ2, then either

(a) the roots are both negative, and we get a stable node, since as t→∞, any initial Y0 tends

to 0.

(b) the roots are both positive, and we get an unstable node, which is the same with the

direction (`time') reversed.

(iii) If λ1 and λ2 are complex, then since the system is real, they are complex conjugates. The

behaviour of the system in then determined by the magnitude of the real part of the roots.

(a) If Re (λ) < 0 then we get a stable spiral, since the magnitude decays, whilst the direction

oscillates.

(b) If Re (λ) > 0 then we get an unstable spiral, which is the reversed version of the stable

spiral.

(c) In the special case of a pure imaginary pair of roots λ, we get a centre, in which the

magnitude never changes, but we still get oscillation - hence the system is entirely periodic.

Example 4.32. Now consider the following forced version of the above equation:

Ẏ =

(
−2 1

15 −4

)
Y +

(
2

1

)
e2t

We can make the educated guess (based on the fact that this is exactly the same as forcing a

second-order system) that there is a particular solution

Y = ue2t

so that

2

(
u1

u2

)
=

(
−2 1

15 −4

)(
u1

u2

)
+

(
2

1

)
which implies that (

4 −1

−15 6

)(
u1

u2

)
=

(
2

1

)
and we can invert this matrix (since 2 is not an eigenvalue, we know this matrix will always be

invertible) to get (
u1

u2

)
=

1

9

(
6 1

15 4

)(
2

1

)

=
1

9

(
13

34

)
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Hence this system has a general solution

Y = A

(
1

3

)
et +B

(
1

−5

)
e−7t − 1

9

(
13

34

)
e2t

y1 = Aet +Be−7t − 13

9
e2t

y2 = 3Aet − 5Be−7t − 34

9
e2t

126



5 Partial Di�erential Equations

The �nal new topic we will discuss in this course is the �eld of partial di�erential equations. This is

a very important �eld which is very poorly understood in general. Partial di�erential equations often

arise in physical systems where the rate of change of some quantity over time is dependent on its rate

of change in space - for example, transfers of heat occur more rapidly when there is a larger heat

gradient, so there are partial derivatives with respect to t and x in the one-dimensional heat equation.

We will study the so-called di�usion equation below.

However, �rst we will consider a more fundamental idea which arises with incredible frequency in

physical problems: the wave equation.

5.1 Wave Equations

We will �rst consider the simplest construction of an abstract wave equation.

5.1.1 First-order wave equation

Imagine some quantity y (x, t) which oscillates in the presence of waves passing through the medium

at a constant speed c. If we pick a point of �xed height on a propagating wave, x1 (t), then we have

dx1

dt
= ±c

It follows that, using the chain rule,

∂y (x1 (t) , t)

∂t
= 0

∂y (x1, t)

∂x1

dx1

dt
+
∂y (x1, t)

∂t
= 0

∂y

∂t
= ∓c∂y

∂x

The equation

∂y

∂t
= c

∂y

∂x

is an advection equation, which can be described as the (unforced) �rst-order wave equation for y,

where c is the constant speed of wave propagation, which we have constrained to be in the negative x

direction as time passes by choosing a sign.

Since dy/dt = 0 along paths in (t, x) space with dx/dt = −c, namely x = x0 − ct, we can always

write

y = f (x0) = f (x+ ct)

In fact, since this does indeed solve the equation even without any information about f , this is the

general solution of the �rst-order wave equation. Note that we do not have an unknown constant, but

instead an unknown function. This is characteristic of partial di�erential equations. Another way of

looking at it is that we need one initial condition for every single x + ct paths - a continuous in�nity

of initial conditions.
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Remark. Of course, in order for the equation to be well-de�ned we need f to have the �rst partial

derivatives in x and t involved in the equation, so f is not totally unconstrained unless we allow some

sort of singular behaviour.

The result is, of course, not surprising given how we derived it. We thought about a wave-like

shape (for example, a wavelet, or a bounded oscillation) traveling along at a constant velocity of −c,
and we found that the solutions consist of all functions which move left at that speed over time, as

shown in Figure 5.1.

x

y

Figure 5.1: The translation of an example wavelet at speed c

Explicitly, if the initial condition if y = F (x) at time t = 0, then y = F (x+ ct) at later times:

y (x, 0) = F (x) =⇒ y (x, t) = F (x+ ct)

Example 5.1. Solve
∂y

∂t
= c

∂y

∂x
with y (x, 0) = x2 − 3

This is now trivial to solve, since we know y = f (x+ ct), and hence using the initial condition,

we immediately have

x2 − 3 = f (x+ 0)

y = (x+ ct)
2 − 3

Note that the paths in (t, x) space along which y is constant are by de�nition exactly the contours

of y in this space, as shown in Figure 5.2. Along each one these curves, y is reduced to a simple ordinary

di�erential equation - in this case the simple y′ = 0 - with an independent set of initial conditions for

each curve. These curves are called characteristic curves or just characteristics, and the method of

characteristics solves PDEs by �nding these curves and then solving the resulting families of ODEs.

The method of characteristics clearly also works for PDEs with inhomogeneities, so long as we can

solve the associated ODE. For instance:
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x

t

Figure 5.2: The form of contours of any solution to the �rst order wave equation

Example 5.2. Solve

∂y

∂t
= c

∂y

∂x
+ ω sin (ωt) with y (x, 0) = cos (ρx)

In this case, along the characteristic curves

dx

dt
= −c

=⇒ x = x0 − ct

we have

dy

dt
= ω sin (ωt)

=⇒ y (t) = A− cos (ωt)

Now at time t = 0 we have

y (x, 0) = A− 1 = cos (ρx)

and since x (0) = x0 it follows that

A = 1 + cos (ρx0)

y (x, t) = 1 + cos (ρ [x+ ct])− cos (ωt)

5.1.2 Second-order wave equation

A more physically derived version of the wave equation can be derived by taking the physical limit of

a suitable discrete medium, such as a series of springs connected to each other with masses.

Imagine a series of identical small masses m connected in a line by identical springs with spring

constant k of natural length h. The equilibrium positions of three adjacent masses are x − h, x and
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x+h - let u (x) be the function giving the distance from the equilibrium position of the mass normally

located at x.

Then Newton's second law says that the force is related to the acceleration by

F = mü (x, t) = m
∂2u

∂t2

whilst Hooke's law states that

F = Fx+h + Fx−h

= k [u (x+ h, t)− u (x, t)] + k [u (x− h, t)− u (x, t)]

= k [u (x+ h, t) + u (x− h, t)− 2u (x, t)]

Equating these two forces gives the following equation of motion:

m
∂2u

∂t2
= k [u (x+ h, t)− 2u (x, t) + u (x− h, t)]

To take the limit of h → 0, we consider N → ∞ masses, spaced along a constant length L = Nh

and weighing a constant total mass M = Nm - the total sti�ness of the spring is also kept constant

at K = k/N . Then the above equation can be rewritten as

∂2u

∂t2
=
KL2

M
· u (x+ h, t)− 2u (x, t) + u (x− h, t)

h2

and the limit can now be taken easily:

∂2u

∂t2
=
KL2

M

∂2u

∂x2

∂2u

∂t2
= c2

∂2u

∂x2

This equation can also be written
∂2u

∂t2
− c2 ∂

2u

∂x2
= 0

and is hence called a hyperbolic11 partial di�erential equation, entirely by analogy with the implicit

formula for a hyperbola: x2/a2 − y2/b2 = 1, though note that it is homogeneous.

In fact, this homogeneity makes it tempting to solve the equation by `factoring' the di�erential

operator: (
∂

∂x
− c ∂

∂t

)
︸ ︷︷ ︸

D1

(
∂

∂x
+ c

∂

∂t

)
︸ ︷︷ ︸

D2

u = D2D1u = 0

11Linear, second-order PDEs are classi�ed in broadly the same way as polynomials are, but these de�nitions can be
extended via more abstract conditions to higher order equations.
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and deducing that u satis�es the original equation if u satis�es one of the two advection (�rst-order

wave) equations there. In fact, this is valid, because these two components commute, D1D2 ≡ D2D1:

u = f (x+ ct)

u = g (x− ct)

are both solutions, as you can easily check. Further, because of the linearity of the equation, so is

any12 function of the form

u = f (x+ ct) + g (x− ct)

What is less clear is whether all solutions are of this form, or if we are missing some solutions. In

order to check this, it is useful to apply a key idea in PDEs: a change of variables.

Theorem 5.3. The second-order wave equation

∂2y

∂t2
= c2

∂2y

∂x2

has the general solution

y = f (x+ ct) + g (x− ct)

Proof. In fact, the fairly heuristic approach we have adopted suggests a natural change of variables,

to

ξ = x− ct

η = x+ ct

Then

x =
1

2
[ξ + η]

t =
1

2c
[η − ξ]

so

∂

∂x
=

1

2

[
∂

∂ξ
+

∂

∂η

]
∂

∂t
=

1

2c

[
− ∂

∂ξ
+

∂

∂η

]

12As before, observe we need u to have the second partial derivatives involved.
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which means that the original equation becomes

1

4

[
∂

∂ξ
+

∂

∂η

]2

y =
1

4

[
− ∂

∂ξ
+

∂

∂η

]2

y

∂2y

∂ξ2
+ 2

∂2y

∂ξ∂η
+
∂2y

∂η2
=

∂2y

∂ξ2
− 2

∂2y

∂ξ∂η
+
∂2y

∂η2

∂2y

∂ξ∂η
= 0

which we can solve straightforwardly by simply integrating, and remembering that `constants' of

integration become arbitrary functions of the variables held constant:

∂y

∂η
= f1 (η)

y = f2 (η) + f3 (ξ)

Therefore, the general solution is

y = f (x+ ct) + g (x− ct)

for some arbitrary functions f and g.

As before, we need in�nitely many conditions in order to �nd f and g - for example, two pieces

of information, y (x, 0) and ∂y/∂t, as initial conditions (at t = 0); and two boundary conditions, the

value of y for some boundary points like x→ ±∞.

Example 5.4. Solve the (second-order) wave equation in the case

y (x, 0) = h (x)[
∂y

∂t

]
(x, 0) = 0

with the boundary conditions

y (x, t)→ 0 as x→ ±∞

and assuming that h (x)→ 0 as x→ ±∞.

This is the general case of an in�nite medium held still in some shape h (x) and then released

at time t = 0. From the initial conditions, we have

f (x) + g (x) = h (x)

cf ′ (x)− cg′ (x) = 0
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Hence f ′ = g′, from which it follows that f = g + C. Thus

2g (x) + C = h (x)

g (x) =
h (x)− C

2

f (x) =
h (x) + C

2

and so

y (x, t) = f (x+ ct) + g (x− ct)

=
h (x+ ct) + C

2
+
h (x− ct)− C

2

=
h (x+ ct) + h (x− ct)

2

This general result shows that the result is that the shape of h splits into two identical compo-

nents which travel in opposite directions at speed c.

Remark. We did not explicitly use the boundary conditions here, because the solution automatically

obeys them if h does.

Example 5.5. If h (x) = e−1/x2

then

y (x, t) =
1

2

[
e−1/(x+ct)2 + e−1/(x−ct)2

]
which is depicted in Figure 5.3 - the initial shape is the blue-shaded shape, gradually splitting into

the shapes shown.

x

y

Figure 5.3: The separation of the initial packet into two identical components
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5.2 Di�usion Equation

The �nal example we shall treat here demonstrates how partial di�erential equations can become

rapidly more complicated to solve despite having extremely simple forms. It is motivated by the

extremely physical problem of heat di�usion.

Let T (x, t) be the temperature of a rod. Then the rate of change of the temperature is determined

by the di�usion equation, which is one dimension is the PDE

∂T

∂t
= α

∂2T

∂x2

where α is the (thermal) di�usivity. This is a constant for the problem of heat transfer, and in this

case we call this equation the one dimensional heat equation. It is a parabolic PDE (to be compared

with y = x2, and contrasted to the hyperbolic wave equation).

Remark. The equation can be derived from Fourier's law, which states that the rate at which heat

energy U �ows is proportional to the (negative) temperature gradient across the boundary. Hence for

any small period of time It and of space Ix = [x0 −∆x, x0 −∆x], we have essentially

ˆ
It

ˆ
Ix

∂U

∂t
dxdt ∝

ˆ
It

(
∂U

∂x

∣∣∣∣
x=x0+∆x

− ∂U

∂x

∣∣∣∣
x=x0−∆x

)
dt

=

ˆ
It

ˆ
Ix

∂2U

∂x2
dxdt

from which it follows that the di�erence two functions being integrated is in fact identically 0. Then

noting that energy and temperature are proportional, the result follows.

Example 5.6. Consider an in�nitely long bar heated at one end; then we can set

T (x, 0) = 0

so that the temperature is initially 0 everywhere, and heat the end to keep it at a constant tem-

perature:

T (0, t) = H (t) =

0 t < 0

Q t > 0

We also assume that at any �xed time t, T (x, t)→ 0 as x→∞.

In the last section, we found that a clever change of variables transformed the PDE into another

PDE which was easier to solve. This problem does not admit such a natural change of variables,

however. We also found that it was possible to transform a PDE to an ODE by �nding a characteristic,

or path along which y is invariant. Whilst we cannot do quite the same thing here, we can adopt another

technique, and �nd a similarity solution. The basic idea is to �nd transformations of variables under

which the equation and initial conditions are invariant, and to deduce the form of a solution in terms

134



of one function, which can then be found by solving a single ODE. If you are not interested in the

derivation, feel free to skip over the following argument.

Consider the dilation transformation

x′ = λax, t′ = λbt, T ′ = λcT

The terms in the heat equation transform as follows:

∂T

∂t
= λb−c

∂T ′

∂t′

∂2T

∂x2
= λ2a−c ∂

2T ′

∂x′2

So

λb−c
∂T ′

∂t′
= αλ2a−c ∂

2T ′

∂x′2

which means that the equation is invariant if b − c = 2a − c (that is, b = 2a); by this we mean that

T (x, t) solves the equation if and only if T ′ (x′, t′) does too.

Now note that we can also �nd combinations of T , x and t which are invariant (for example by

considering xitjT k = (x′)
i
(t′)

j
(T ′)

k
= λai+bj+ckxitjT k and solving ai+ bj + ck = 0). In particular

(T ′) (t′)
−c/b

= λcT
[
λbt
]−c/b

= Tt−c/b

x′ (t′)
−a/b

= λax
[
λb
]−a/b

= xt−a/b

are invariant for any a, b, c. Since we have established b = 2a, it follows that

ξ =
x′√
t′

=
x√
t

is invariant. This suggests looking for a solution of the form

T ′

(t′)
c/b

=
T

tc/b
= θ (ξ)

T = tc/2aθ (ξ)

In this case, we �nd

∂T

∂t
=

c

2a
t(c/2a)−1θ (ξ) + tc/2aθ′ (ξ)

∂ξ

∂t

= t(c/2a)−1

[
c

2a
θ (ξ) + tθ′ (ξ)

(
−1

2

x√
t3

)]
= t(c/2a)−1

[
c

2a
θ (ξ)− ξ

2
θ′ (ξ)

]
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and

∂T

∂x
= tc/2aθ′ (ξ)

∂ξ

∂x

= t(c/2a)−(1/2)θ′ (ξ)

∂2T

∂x2
= t(c/2a)−(1/2)θ′′ (ξ)

∂ξ

∂x

= t(c/2a)−1θ′′ (ξ)

Hence the PDE has become

t(c/2a)−1

[
c

2a
θ (ξ)− ξ

2
θ′ (ξ)

]
= αt(c/2a)−1θ′′ (ξ)

αθ′′ (ξ) +
ξ

2
θ′ (ξ)− c

2a
θ (ξ) = 0

which is an ODE for θ (ξ).

So all we need to do is make a choice for a and c (in fact, this amounts to only one choice, because

only their ratios are signi�cant). We do this by seeing what combination of them give invariant

boundary conditions, which depends on the nature of the boundary conditions.

In this case, the boundary condition is T (0, t) = Q. Note that T ′ = tc/2aθ (0) which is only constant

if and only if c = 0. Then the above equation becomes

αθ′′ (ξ) +
ξ

2
θ′ (ξ) = 0

where

T = tc/2aθ (ξ) = θ

(
x√
t

)
To summarize, we are attempting to �nd solutions

T (x, t) = θ

(
x√
t

)

which - as you can verify directly - is a solution of the equation i� θ satis�es

αθ′′ (ξ) +
ξ

2
θ′ (ξ) = 0

Now this equation can be solved using the integrating factor µ = exp
[´

ξ
2αdξ

]
= eξ

2/4α, since then

(
eξ

2/4αθ′
)′

= 0

θ′ = Ae−ξ
2/4α

θ = A

ˆ
e−ξ

2/4αdξ +B

= Cerf

(
ξ

2
√
α

)
+B
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where we use:

De�nition 5.7. The error function erf is de�ned by

erf (z) ≡ 2√
π

ˆ z

0

e−t
2

dt

and has no closed form. (See Figure 5.4.)

z

-1

+1

erf z

Figure 5.4: The error function erf (z)

Hence for the point-like boundary condition, we have (for t > 0) that

T (0, t) = θ (0) = Q

which implies that B = Q.

Also, T (x, t) → 0 as t → 0 (from above) so θ (ξ) → 0 as ξ = x/
√
t → ∞. Therefore, because

erf (z)→ 1 as z →∞, it follows that C = −1, and so

θ (ξ) = Q

[
1− erf

(
ξ

2
√
α

)]
It follows that

T (x, t) = Q

[
1− erf

(
x

2
√
αt

)]
= Qerfc

(
x

2
√
αt

)
where:

De�nition 5.8. The complementary error function erfc is de�ned by

erfc (z) ≡ 1− erf (z)

Hence in this problem, the temperature curve at any �xed time t is given by a curve like Qerfc (x),
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except stretched horizontally by a factor
√
αt. Over time, the shape is self-similar (hence similarity

solution), being stretched like
√
t as time passes. A few curves are shown in Figure 5.5.

0
x

Q

T

Figure 5.5: The temperature distribution with 5 equally spaced samples
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6 * Generalized Methods for Ordinary Di�erential Equations

SECTION INCOMPLETE.

6.1 Systems of Linear Equations

6.2 First-Order Vector Equations

In section 4.7, we looked at various equations of the form

Ẏ = M (t)Y + F (t)

for an unknown vector Y (t). How do we solve this for a general vector Y (t) ∈ Rn, general matrix

M (t) and general forcing term F (t)?

The �rst thing we will do is look at the simplest case in Rn:

Ẏ = MY, constant M

For the one-dimensional case ẏ = my, we know the solution is y = A exp (mt). Why does this work?

The key idea is that d (exp t) /dt = exp t, a special property of the function exp t.

6.2.1 Matrix exponentials

But now we have to somehow include matrices into the answer. We could approach this is various

ways; one is to think about diagonalizing theM matrix, if possible; then we �nd that some transformed

version of Y will obey some simpli�ed pair of separated equations. However, this leads us away into

worrying about diagonalization, which is an unnecessary complication.

Instead, let's think about how we might try to de�ne an exponential of a matrix, so that the

chain rule gives �d (expMt) /dt = M expMt�. So how can we de�ne exp? Commonly, we de�ne these

functions in terms of their Taylor series - recall

exp t = 1 + t+
1

2
t2 +

1

3!
t3 + · · · =

∞∑
m=0

tm

m!

Can we simply shove a matrix into this calculation? We can certainly let T be a n × n matrix and

write down

expT = I + T +
1

2
T 2 +

1

3!
T 3 + · · · =

∞∑
m=0

Tm

m!

since we know how to calculate powers of a matrix by multiplying it together - the only question

we'd worry about is whether the sum converges to a well-de�ned matrix. (What do we mean by

convergence? Simply that every component of the matrix we're making up converges individually.

Any other resonable notions of convergence are equivalent.) This is not particularly hard to show, but

not very relevant - the key idea is you still can't grow very rapidly term by term.
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Proof. Let A be the magnitude of the largest element in the matrix T . Then note that if B similarly

bounds some other matrix T ′, we have

|(TT ′)ik| =

∣∣∣∣∣∣
n∑
j=1

(
TijT

′
jk

)∣∣∣∣∣∣ ≤
n∑
j=1

∣∣TijT ′jk∣∣ ≤ n ·AB
Therefore, T 2 has elements no larger in magnitude than nA2; T 3 is bounded by n2A3; and by

induction Tm is bounded by nmAm (adding a factor of n for simplicity). As a result, each element

of our sum de�ning expT is bounded by (nA)
m
/m! - this means the series for each element is

absolutely convergent, since we know exp (nA) is well-de�ned. It is a theorem - from the course

Analysis I - that this implies the series is converegnt.

Anyhow, we can take the de�nition

expT = I + T +
1

2
T 2 +

1

3!
T 3 + · · · =

∞∑
m=0

Tm

m!

and run with it. Let T = Mt. Then (technically using more Analysis I theorems on di�erentiating

in�nite series, but let us live dangerously)

d

dt
exp (Mt) =

d

dt

∞∑
m=0

Mm t
m

m!

=

∞∑
m=0

Mm d

dt

tm

m!

=

∞∑
m=1

Mm tm−1

(m− 1)!

=

∞∑
m=0

Mm+1 t
m

m!

= M exp (Mt)

But this means that we can solve

Ẏ = MY

straightforwardly by

Y = exp (Mt)Y0

noting that

exp


0 · · · 0
...

. . .
...

0 · · · 0

 = I
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6.2.2 The inhomogeneous case

Suppose

Ẏ = MY + F (t)

where M is still a constant matrix. Checking �rst the one-dimensional case, we �nd ẏ = my + f can

be solved by using an integrating factor:

(ẏ −my − f) e−mt = 0

d

dt

(
e−mty

)
− fe−mt = 0

y = emt
[
const. +

ˆ t

e−mt
′
f (t′) dt′

]
Can we use a similar trick with matrices? Noting M exp (Mt) = exp (Mt)M - which is obvious

from the series de�nition - we get

d

dt
(exp (−Mt)Y) = −M exp (−Mt)Y + exp (−Mt) Ẏ

= exp (−Mt)
[
Ẏ −MY

]
= exp (−Mt)F (t)

which we can solve by noting that

[exp (Mt)]
−1

= exp (−Mt)

(which can be shown by computing exp (Mt) exp (−Mt) in the series expansion) so that

Y = exp (Mt)

[
const. +

ˆ t

exp (−Mt′)F (t′) dt′
]

6.2.3 The non-autonomous case?

So what if M = M (t) is time-dependent? Let's return to the one-dimensional case to begin with,

ẏ = m (t) y. This equation is separable:

ẏ

y
= m (t) =⇒ d

dt
ln y = m (t)

=⇒ y = y0 exp

(ˆ t

m (t) dt′
)

which clearly agrees with the m = const. case. Rather than worrying about the intermediate steps, let

us try generalizing the answer naïvely:

Y =

[
exp

ˆ t

M (t) dt′
]
Y0

(The integral of a matrix is formed by integrating it component by component.)
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What happens? Let N =
´ t
Mdt′.

d

dt
expN =

d

dt

∞∑
m=0

Nm

m!

=
d

dt

∞∑
m=0

N ·N · · · · ·N
m!

=

∞∑
m=0

M ·N · · · · ·N +N ·M · · · · ·N + · · ·+N ·N · · · · ·M
m!

The problem is that if NM 6= MN , then the numerator is not necessarily the same as m ·MNm−1.

Example 6.1. Consider

M =

(
1 0

2t 0

)
Then

N =

(
t 0

t2 0

)
and so

expN =

(
1 0

0 1

)
+

(
t 0

t2 0

)
+

1

2!

(
t2 0

t3 0

)
+

1

3!

(
t3 0

t4 0

)
+ · · · =

(
et 0

t (et − 1) 1

)

but then

d

dt
expN =

(
et 0

et (1 + t)− 1 0

)

M expN =

(
1 0

2t 0

)(
et 0

t (et − 1) 1

)

=

(
et 0

2tet 0

)

You can easily check that this means you do not get the correct solution to a typical initial value

problem.

In fact, sadly we cannot solve this problem simply in general.

6.3 Degeneracy

We noted on a few occasions that there is a general principle at work for linear equations with constant

coe�cients: if yc (x) = eλx is some single solution to the homogeneous equation, then x · yc has a

remainder under the di�erential operator which is a multiple of yc = eλx. This allowed us to solve

second-order degenerate equations.
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In fact, we can prove something slightly more general and very useful:

Lemma 6.2. For an nth-order forced linear equation, if yc (x) is some single solution to the com-

plementary equation, then applying the di�erential operator to x · yc gives

D [xyc] = E [yc]

where E is another di�erential operator with related coe�cients

E [y] =
∑
i

ici (y)
(i−1)

Proof. We have by de�nition that

D [xyc] =
∑
i

ci (xyc)
(i)

Now by Leibniz's product rule,

(xyc)
(i)

= x · (yc)(i)
+ i · 1 · (yc)(i−1)

+ 0 · (· · · )

= x · (yc)(i)
+ i · (yc)(i−1)

so

D [xyc] =
∑
i

ci

[
x · (yc)(i)

+ i · (yc)(i−1)
]

= x ·D [yc]︸ ︷︷ ︸
0

+
∑
i

ici (yc)
(i−1)

=
∑
i

ici (yc)
(i−1)

= E [yc]

where we used the fact that yc solves the equation D [yc] = 0 to simplify the expression. Note that

E is another di�erential operator, of the reduced order n− 1, dependent only on the coe�cients of

the original equation (that is, independent of yc).

We can deduce several results from this.

Theorem 6.3. If λ is a repeated root of multiplicity m of the characteristic equation of the operator

D [·], which is linear with constant coe�cients, then

y = eλx, xeλx, x2eλx, · · · , xm−1eλx
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are all linearly independent solutions to the equation D [y] = 0.

Proof. The characteristic equation of D is

g (µ) =
∑

ciµ
i = 0

We proceed by induction - assume that the result holds for multiplicity m− 1, and assume λ is

a solution of multiplicity m > 1. Then the �rst derivative of g at λ is zero - in fact, it is a root of

multiplicity m− 1. To see this, note that by de�nition

g (µ) = (µ− λ)
m
h (µ)

for some polynomial h (µ), and then

g′ (µ) = (µ− λ)
m−1

[mh (µ) + h′ (µ)]

But we know that

g′ (µ) =
∑

iciµ
i

which exactly the characteristic equation of the operator E [·]. In fact, as y1 = xm−2eλx satis�es

D [y1] = 0 by the induction hypothesis, we have

D
[
xm−1eλx

]
= D [x · y1]

= E [y1]

= E
[
xm−2eλx

]
Then once more, the induction hypothesis tells us that because λ is a root of E's characteristic

equation with multiplicity m− 1, y1 = xm−2eλx is a solution to E [y] = 0. Hence

D
[
xm−1eλx

]
= 0

Now we are done by induction.

So we always have families of solutions of the form

y = eλx, xeλx, x2eλx, · · · , xm−1eλx

for linear equations with constant coe�cients.
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6.4 The Wronskian and Abel's Theorem

Take any homogeneous, linear nth-order di�erential equation, which can be written in the form

dny

dxn
+ pn−1 (x)

dn−1y

dxn−1
+ · · ·+ p1 (x)

dy

dx
+ p0 (x) y = 0

for some set of x on the real line R.

Theorem 6.4 (Abel's Identity). Let us pn−1 (x) be a continuous function. Then on this set, the

Wronskian W (x) of a set of n solutions to this equation obeys the equation

W (x) = W (x0) exp

(
−
ˆ x

x0

pn−1 (t) dt

)

We shall prove this general statement, which has the corollary that W (x0) 6= 0 implies W (x) 6= 0

for all x - that is, Abel's Theorem.

Proof. The derivative of the Wronskian W is the derivative of a matrix determinant. Remembering

that (from the Leibniz formula) we can express the determinant as a sum over permutations of the

columns like so:

detA =
∑
σ

sgn (σ)A1σ(1)A2σ(2) · · ·Amσ(m)

we can see that

d

dt
detA =

∑
σ

sgn (σ)A′1σ(1)A2σ(2) · · ·Amσ(m)

+
∑
σ

sgn (σ)A1σ(1)A2σ(2)′ · · ·Amσ(m)

+ · · ·

+
∑
σ

sgn (σ)A1σ(1)A2σ(2) · · ·A′mσ(m)

and so if the solutions are y1, · · · , yn then

W ′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y′1 y′2 · · · y′n

y′1 y′2 · · · y′n

y′′1 y′′2 · · · y′′n

y′′′1 y′′′2 · · · y′′′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 y2 · · · yn

y′′1 y′′2 · · · y′′n

y′′1 y′′2 · · · y′′n

y′′′1 y′′′2 · · · y′′′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ · · ·+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y′1 y′2 · · · y′n

y′′1 y′′2 · · · y′′n
...

...
. . .

...

y
(n−3)
1 y

(n−3)
2 · · · y

(n−3)
n

y
(n−2)
1 y

(n−2)
2 · · · y

(n−2)
n

y
(n)
1 y

(n)
2 · · · y

(n)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣145



But then every matrix except for the last has two identical rows, and therefore has determinant

0. So

W ′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

y′1 y′2 · · · y′n

y′′1 y′′2 · · · y′′n
...

...
. . .

...

y
(n−2)
1 y

(n−2)
2 · · · y

(n−2)
n

y
(n)
1 y

(n)
2 · · · y

(n)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
But now, using our expression for y

(n)
i in terms of y

(n−k)
i we can subtract p0 times the �rst row,

p1 times the second, and so on, from the last row. This gives us

W ′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

y′1 y′2 · · · y′n

y′′1 y′′2 · · · y′′n
...

...
. . .

...

y
(n−2)
1 y

(n−2)
2 · · · y

(n−2)
n

−pn−1y
(n−1)
1 −pn−1y

(n−1)
2 · · · −pn−1y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −pn−1W

Then the result follows immediately, because we can integrate W ′/W to get lnW and then

W = e
−
´ x
x0
pn−1(t)dt

W0

taking account of the various factors, and noting that the integral should be 0 at x = x0.

6.5 Variation of Parameters
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